Isolation and Comparative Characterization of Saccharomyces cerevisiae from Indigenous Fermented Tea “Miang” under Fermentation Stress Conditions


Somsay PHOVISAY, Phuangsavat Phimsala, Amphone PHASOUK, Leulee Nortualee, Vongpasith Chanthakhoun


Abstract


This study investigated the isolation and comparative characterization of Saccharomyces cerevisiae strains from indigenous fermented tea “Miang” and their comparison with the commercial strain Saccharomyces cerevisiae EC1118 under various fermentation stress conditions. Yeast strains were isolated from Miang, and their performance was evaluated in terms of sugar utilization, pH tolerance, ethanol concentration, potassium metabisulfite (KMS), sodium chloride (NaCl), and osmotic pressure tolerance. Optical density (OD) at 600 nm was measured using a spectrophotometer over a 24-h incubation period to assess yeast growth. The results showed that the newly isolated strain, S. cerevisiae MXH-1, exhibited superior growth in ethanol concentrations of up to 15%, with an OD increase of 1.22 compared to 0.12 for EC1118. Additionally, MXH-1 demonstrated enhanced tolerance to KMS at 200 ppm and NaCl at 5%, with significantly higher OD changes than EC1118. These findings underscore the potential of S. cerevisiae MXH-1 for industrial applications, particularly in high-stress fermentation processes. This study provides valuable insights into the fermentation capabilities of indigenous yeast strains under challenging environmental conditions positioning MXH-1 as a promising candidate for food and beverage industries. Further research is recommended to explore the genetic mechanisms underlying its resilience and tolerance to fermentation stressors.

Full Text:

PDF

References


A. Querol and G. Fleet, Eds., Yeasts in Food and Beverages. Springer, 2006.

G. M. Walker, Yeast Physiology and Biotechnology. Wiley-Blackwell, 1998.

I. S. Pretorius and F. F. Bauer, “Meeting the consumer challenge through genetically customized wine-yeast strains,” Trends Biotechnol., vol. 20, no. 10, pp. 426–432, Oct. 2002.

A. Bekatorou, C. Psarianos, and A. A. Koutinas, “Production of food grade yeasts,” Food Technol. Biotechnol., vol. 44, no. 3, 2006.

C. A. Abodunde and B. C. Akin-Osanaiye, “Conversion of orange and pineapple fruit peel waste into single cell protein using Saccharomyces cerevisiae,” Int. J. Food Agric. Nat. Resour., vol. 4, no. 3, pp. 14–20, 2023.

P. W. Piper, “The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap,” FEMS Microbiol. Lett., vol. 173, no. 2, pp. 139–145, 1995.

U. Jhariya, N. A. Dafale, S. Srivastava, R. S. Bhende, A. Kapley, and H. J. Purohit, “Understanding ethanol tolerance mechanism in Saccharomyces cerevisiae to enhance the bioethanol production: Current and future prospects,” BioEnergy Res., vol. 14, pp. 670–688, 2021.

S. Hohmann and W. H. Mager, Eds., Yeast Stress Responses, vol. 1. Springer, 2007.

S. Phovisay, A. D. Abdullahi, N. N. N. Kham, K. Unban, K. Shetty, and C. Khanongnuch, “Microbial population and physicochemical properties of Miang fermented in bamboo tubes by the Luar ethnic group in Lao PDR,” Foods, vol. 13, no. 13, p. 2109, 2024.

C. Khanongnuch, K. Unban, A. Kanpiengjai, and C. Saenjum, “Recent research advances and ethno-botanical history of Miang, a traditional fermented tea (Camellia sinensis var. assamica) of northern Thailand,” J. Ethn. Foods, vol. 4, no. 3, pp. 135–144, 2017.

K. Unban, N. Khatthongngam, T. Pattananandecha, C. Saenjum, K. Shetty, and C. Khanongnuch, “Microbial community dynamics during the non-filamentous fungi growth-based fermentation process of Miang, a traditional fermented tea of north Thailand and their product characterizations,” Front. Microbiol., vol. 11, p. 1515, 2020.

A. Kanpiengjai, N. Chui-Chai, S. Chaikaew, and C. Khanongnuch, “Distribution of tannin-tolerant yeasts isolated from Miang, a traditional fermented tea leaf (Camellia sinensis var. assamica) in northern Thailand,” Int. J. Food Microbiol., vol. 238, pp. 121–131, 2016.

P. Kodchasee et al., “Assessment of tannin tolerant non-Saccharomyces yeasts isolated from Miang for production of health-targeted beverage using Miang processing byproducts,” J. Fungi, vol. 9, no. 2, p. 165, 2023.

J. P. Tamang and K. Kailasapathy, Eds., Fermented Foods and Beverages of the World. CRC Press, 2010.

L. Trabalzini et al., “Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae,” Biochem. J., 2003, doi: 10.1042/BJ20020140.

F. H. Lam, A. Ghaderi, G. R. Fink, and G. Stephanopoulos, “Engineering alcohol tolerance in yeast,” Science, vol. 346, no. 6205, pp. 71–75, 2014.

H. S. Kim, N. R. Kim, J. Yang, and W. Choi, “Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae,” Appl. Microbiol. Biotechnol., vol. 91, pp. 1159–1172, 2011.

S. S. Vamvakas and J. Kapolos, “Factors affecting yeast ethanol tolerance and fermentation efficiency,” World J. Microbiol. Biotechnol., vol. 36, no. 8, p. 114, 2020.

A. Chen, T. Qu, J. R. Smith, J. Li, G. Du, and J. Chen, “Osmotic tolerance in Saccharomyces cerevisiae: Implications for food and bioethanol industries,” Food Biosci., vol. 104451, 2024.

T. Nardi, V. Corich, A. Giacomini, and B. Blondin, “A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast,” Microbiology, vol. 156, no. 6, pp. 1686–1696, 2010.

D. Rossouw, R. Olivares-Hernandes, J. Nielsen, and F. F. Bauer, “Comparative transcriptomic approach to investigate differences in wine yeast physiology and metabolism during fermentation,” Appl. Environ. Microbiol., vol. 75, no. 20, pp. 6600–6612, 2009.

T. Hirasawa, C. Furusawa, and H. Shimizu, “Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology?,” Appl. Microbiol. Biotechnol., vol. 87, pp. 391–400, 2010.

M. M. Dos Santos and K. Ishida, “We need to talk about Candida tropicalis: Virulence factors and survival mechanisms,” Med. Mycol., vol. 61, no. 8, p. myad075, 2023.

S. Kumari, A. K. Jha, and A. K. Singh, “Isolation and characterization of temperature and ethanol-tolerant strains of Saccharomyces cerevisiae from naturally fermented juices,” Biosci. Biotechnol. Res. Asia, vol. 16, no. 1, pp. 97–103, 2019.

K. Basa, S. Papanikolaou, M. Dimopoulou, A. Terpou, S. Kallithraka, and G. J. E. Nychas, “Trials of commercial and wild-type Saccharomyces cerevisiae strains under aerobic and anaerobic conditions: Ethanol production and must fermentation from grapes of Santorini (Greece) native varieties,” Fermentation, vol. 8, no. 6, p. 249, 2022.

M. Eigenfeld, R. Kerpes, and T. Becker, “Understanding the impact of industrial stress conditions on replicative aging in Saccharomyces cerevisiae,” Front. Fungal Biol., vol. 2, p. 665490, 2021.

Y. Wu, B. Li, B. Miao, C. Xie, and Y. Q. Tang, “Saccharomyces cerevisiae employs complex regulation strategies to tolerate low pH stress during ethanol production,” Microb. Cell Factories, vol. 21, no. 1, p. 247, 2022.

S. R. Chaves, A. Rego, V. M. Martins, C. Santos-Pereira, M. J. Sousa, and M. Côrte-Real, “Regulation of cell death induced by acetic acid in yeasts,” Front. Cell Dev. Biol., vol. 9, p. 642375, 2021.

S. Giannattasio, N. Guaragnella, M. Ždralević, and E. Marra, “Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid,” Front. Microbiol., vol. 4, p. 33, 2013.

M. S. Kim et al., “Environmental resistance of indigenous Saccharomyces cerevisiae with tolerance to potassium metabisulfite at the microbial succession stage of fermenting Campbell Early grape,” Korean J. Food Preserv., vol. 20, no. 6, pp. 886–893, 2013.

N. P. Mira, M. Palma, J. F. Guerreiro, and I. Sá-Correia, “Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid,” Microb. Cell Factories, vol. 9, no. 1, pp. 1–13, 2010.

J. T. Cunha, A. Romaní, C. E. Costa, I. Sá-Correia, and L. Domingues, “Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions,” Appl. Microbiol. Biotechnol., vol. 103, pp. 159–175, 2019.

J. Norbeck and A. Blomberg, “Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl: Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway,” J. Biol. Chem., vol. 272, no. 9, pp. 5544–5554, 1997.

S. Shokoohi, K. Tsigounis, L. M. Urmaza, and A. Z. Perez, “The effect of stress due to sodium chloride exposure on the growth of Saccharomyces cerevisiae,” Expedition, vol. 5, 2015.

S. Hohmann, “Osmotic stress signaling and osmoadaptation in yeasts,” Microbiol. Mol. Biol. Rev., vol. 66, no. 2, pp. 300–372, 2002.

W. H. Mager and M. Siderius, “Novel insights into the osmotic stress response of yeast,” FEMS Yeast Res., vol. 2, no. 3, pp. 251–257, 2002.

M. J. Tamás et al., “A short regulatory domain restricts glycerol transport through yeast Fps1p,” J. Biol. Chem., vol. 278, no. 8, pp. 6337–6345, 2003.

S. Özcan and M. Johnston, “Function and regulation of yeast hexose transporters,” Microbiol. Mol. Biol. Rev., vol. 63, no. 3, pp. 554–569, 1999.

T. W. Jeffries, “Engineering yeasts for xylose metabolism,” Curr. Opin. Biotechnol., vol. 17, no. 3, pp. 320–326, 2006.




DOI: https://doi.org/10.46676/ij-fanres.v6i2.442

Refbacks

  • There are currently no refbacks.


E-ISSN : 2722-4066

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

slot online

slot88

slot88

slot777

slot gacor

slot dana

slot gacor

slot qris

slot qris

slot thailand

slot thailand

slot88 terpercaya

slot88 resmi

geo138

slot gacor

https://theamericanmadepodcast.com/
  • STM88 adalah Bandar Togel Resmi Terbesar se-Asia yang memberikan layanan profesional, sistem keamanan tinggi, serta peluang menang yang transparan, STM88 mampu meraih kepercayaan jutaan pemain.