Sustainable Strategies for Broiler Waste Management: Insights from Stakeholder Prioritization in Thailand


Senaka Bandara


Abstract


Thailand’s significant contribution to the global chicken meat industry demands the adoption of sustainable broiler waste management practices, particularly as countries worldwide strive to implement strict policies aimed at reducing emissions from agricultural products.  This study employed the Analytic Hierarchy Process (AHP) to analyze diverse stakeholder perceptions regarding the adoption of these practices, utilizing a multi-criteria decision-making approach. Experts prioritized environmental concerns (0.4386), emphasizing sustainability, while farm owners prioritized economic factors (0.5987), reflecting profit-driven motives. Subcriteria analysis highlighted the significance of financial aspects, with “Capital cost” attaining the highest weight (26.05%), followed by environmental concerns like “Climate change” (11.05%). Technical feasibility and societal considerations received moderate prioritization. Stakeholder preferences for waste management methods further highlighted divergent perspectives, with experts favoring gasification for its environmental benefits, while owners prioritized land application for its cost-effectiveness. Composting emerged as a balanced choice. These findings emphasize the importance of considering diverse criteria in waste management decision-making, highlighting the need for comprehensive approaches to ensure sustainability in Thailand's broiler waste management practices.

Full Text:

PDF

References


USDA, “Livestock and poultry: world markets and trade,” United States Dep. Agric. Foreign Agric. Serv., p. 31, 2024, [Online]. Available: http://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.PDF.

M. Brink, G. P. J. Janssens, and E. Delezie, “How do moisture content, friability, and crust development of litter influence ammonia concentrations in broiler production?,” Livest. Sci., vol. 265, no. April, p. 105109, 2022, doi: 10.1016/j.livsci.2022.105109.

M. D. Manogaran, R. Shamsuddin, M. H. Mohd Yusoff, M. Lay, and A. A. Siyal, “A review on treatment processes of chicken manure,” Clean. Circ. Bioeconomy, vol. 2, no. May, p. 100013, 2022, doi: 10.1016/j.clcb.2022.100013.

C. D. Coufal, C. Chavez, P. R. Niemeyer, and J. B. Carey, “Measurement of broiler litter production rates and nutrient content using recycled litter,” Poult. Sci., vol. 85, no. 3, pp. 398–403, 2006, doi: 10.1093/ps/85.3.398.

J. Strašifták and P. Juhás, “The effect of a bedding materials on performance, welfare and behavior of broiler chickens: A review,” J. Cent. Eur. Agric., vol. 24, no. 2, pp. 311–321, 2023, doi: 10.5513/JCEA01/24.2.3780.

D. Dróżdż, K. Wystalska, K. Malińska, A. Grosser, A. Grobelak, and M. Kacprzak, “Management of poultry manure in Poland – Current state and future perspectives,” J. Environ. Manage., vol. 264, no. December 2019, 2020, doi: 10.1016/j.jenvman.2020.110327.

L. Zhang et al., “Enhanced growth and activities of the dominant functional microbiota of chicken manure composts in the presence of maize straw,” Front. Microbiol., vol. 9, no. MAY, pp. 1–11, 2018, doi: 10.3389/fmicb.2018.01131.

D. O. Fatoba, D. G. Amoako, A. L. K. Abia, and S. Y. Essack, “Transmission of Antibiotic-Resistant Escherichia coli from Chicken Litter to Agricultural Soil,” Front. Environ. Sci., vol. 9, no. January, pp. 1–10, 2022, doi: 10.3389/fenvs.2021.751732.

A. L. Meena, M. Karwal, D. Dutta, and R. P. Mishra, “Composting: Phases and Factors Responsible for Efficient and Improved Composting,” Agric. Food, vol. 3, no. 1, pp. 85–90, 2021, doi: 10.13140/RG.2.2.13546.95689.

L. Zhang and X. Sun, “Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste,” Waste Manag., vol. 48, pp. 115–126, 2016, doi: 10.1016/j.wasman.2015.11.032.

D. Fischer and B. Glaser, “Synergisms between Compost and Biochar for Sustainable Soil Amelioration,” 2009.

L. Chu, Y. Wang, B. Huang, J. Ma, and X. Chen, “Dissipation Dynamics of Doxycycline and Gatifloxacin and Aerobic Composting,” 2021.

J. Subirats, R. Murray, A. Scott, C. H. Lau, and E. Topp, “Science of the Total Environment Composting of chicken litter from commercial broiler farms reduces the abundance of viable enteric bacteria , Firmicutes , and selected antibiotic resistance genes,” Sci. Total Environ., vol. 746, p. 141113, 2020, doi: 10.1016/j.scitotenv.2020.141113.

A. Tawfik and A. Salem, “The effect of organic loading rate on bio-hydrogen production from pre-treated rice straw waste via mesophilic up-flow anaerobic reactor,” Bioresour. Technol., vol. 107, pp. 186–190, 2012, doi: https://doi.org/10.1016/j.biortech.2011.11.086.

A. Tawfik et al., “Bioenergy production from chicken manure: a review,” Environ. Chem. Lett., vol. 21, no. 5, pp. 2707–2727, 2023, doi: 10.1007/s10311-023-01618-x.

Y. Song, W. Qiao, J. Zhang, and R. Dong, “Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review,” Energies, vol. 16, no. 12. 2023, doi: 10.3390/en16124675.

M. E. Kirby, M. W. Mirza, J. Davies, S. Ward, and M. K. Theodorou, “A Novel Nitrogen Removal Technology Pre-Treating Chicken Manure, Prior to Anaerobic Digestion,” Sustainability, vol. 12, no. 18. 2020, doi: 10.3390/su12187463.

M. Eraky, M. Elsayed, M. A. Qyyum, P. Ai, and A. Tawfik, “A new cutting-edge review on the bioremediation of anaerobic digestate for environmental applications and cleaner bioenergy,” Environ. Res., vol. 213, p. 113708, 2022, doi: https://doi.org/10.1016/j.envres.2022.113708.

T. Turzyński, J. Kluska, and D. Kardaś, “Study on chicken manure combustion and heat production in terms of thermal self-sufficiency of a poultry farm,” Renew. Energy, vol. 191, pp. 84–91, 2022, doi: 10.1016/j.renene.2022.04.034.

A. Dimache, J. O’Connor, and D. Kearney, “Environmental Analysis of the Use of Poultry Manure as Fuel for Combustion on Broiler Farms: A Case Study,” 2014, [Online]. Available: https://api.semanticscholar.org/CorpusID:106613796.

L. Gheorghe, G. Negreanu, I. Pîșă, M. Grigoriu, and D.-A. Ciupageanu, Experimental researches on poultry manure combustion in co-combustion with biomass, vol. 286. 2021.

M. S. Hussein, K. G. Burra, R. S. Amano, and A. K. Gupta, “Temperature and gasifying media effects on chicken manure pyrolysis and gasification,” Fuel, vol. 202, pp. 36–45, 2017, doi: 10.1016/j.fuel.2017.04.017.

J. M. Jabar, “Pyrolysis: A Convenient Route for Production of Eco-Friendly Fuels and Precursors for Chemical and Allied Industries,” M. Bartoli and M. Giorcelli, Eds. Rijeka: IntechOpen, 2021, p. Ch. 7.

J. Gu, C. T. Chong, G. R. Mong, J.-H. Ng, and W. W. Chong, “Determination of Pyrolysis and Kinetics Characteristics of Chicken Manure Using Thermogravimetric Analysis Coupled with Particle Swarm Optimization,” Energies, vol. 16, no. 4. 2023, doi: 10.3390/en16041919.

A. Wang et al., “Speciation and environmental risk of heavy metals in biochars produced by pyrolysis of chicken manure and water-washed swine manure,” Sci. Rep., vol. 11, no. 1, p. 11994, 2021, doi: 10.1038/s41598-021-91440-8.

M. Kacprzak et al., “Cycles of carbon, nitrogen and phosphorus in poultry manure management technologies – environmental aspects,” Crit. Rev. Environ. Sci. Technol., vol. 53, no. 8, pp. 914–938, Apr. 2023, doi: 10.1080/10643389.2022.2096983.

M. Z. Hossain, M. M. Bahar, B. Sarkar, S. W. Donne, P. Wade, and N. Bolan, “Assessment of the fertilizer potential of biochars produced from slow pyrolysis of biosolid and animal manures,” J. Anal. Appl. Pyrolysis, vol. 155, no. February, p. 105043, 2021, doi: 10.1016/j.jaap.2021.105043.

K. G. Burra, M. S. Hussein, R. S. Amano, and A. K. Gupta, “Syngas evolutionary behavior during chicken manure pyrolysis and air gasification,” Appl. Energy, vol. 181, pp. 408–415, 2016, doi: 10.1016/j.apenergy.2016.08.095.

A. Molino, S. Chianese, and D. Musmarra, “Biomass gasification technology: The state of the art overview,” J. Energy Chem., vol. 25, no. 1, pp. 10–25, 2016, doi: https://doi.org/10.1016/j.jechem.2015.11.005.

V. Belgiorno, G. De Feo, C. Della Rocca, and R. Napoli, “Energy from Gasification of Solid Wastes,” Waste Manag., vol. 23, pp. 1–15, Feb. 2003, doi: 10.1016/S0956-053X(02)00149-6.

Diego Mauricio Yepes Maya, Angie Lizeth Espinosa Sarmiento, Cristina Aparecida Vilas Boas de Sales Oliveira, Electo Eduardo Silva Lora, and RubenildoVieira Andrade, “Gasification of Municipal Solid Waste for Power Generation in Brazil, a Review of Available Technologies and Their Environmental Benefits,” J. Chem. Chem. Eng., vol. 10, no. 6, pp. 249–255, 2016, doi: 10.17265/1934-7375/2016.06.001.

P. Joseph, S. Tretsiakova-McNally, and S. McKenna, “Characterization of cellulosic wastes and gasification products from chicken farms,” Waste Manag., vol. 32, no. 4, pp. 701–709, 2012, doi: 10.1016/j.wasman.2011.09.024.

H. Wu, M. A. Hanna, and D. D. Jones, “Life cycle assessment of greenhouse gas emissions of feedlot manure management practices: Land application versus gasification,” Biomass and Bioenergy, vol. 54, pp. 260–266, 2013, doi: 10.1016/j.biombioe.2013.04.011.

M. Tańczuk, R. Junga, S. Werle, M. Chabiński, and Ziółkowski, “Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass,” Renew. Energy, vol. 136, pp. 1055–1063, 2019, doi: 10.1016/j.renene.2017.05.074.

V. Torretta, E. Rada, I. Istrate, and M. Ragazzi, “Poultry manure gasification and its energy yield,” UPB Sci. Bull. Ser. D Mech. Eng., vol. 75, pp. 231–238, Jan. 2013.

M. Serio, R. Bassilakis, E. Kroo, and M. Wójtowicz, “Pyrolysis processing of animal manure to produce fuel gases,” ACS Div. Fuel Chem. Prepr., vol. 47, Aug. 2002.

H. K. Jeswani, A. Whiting, A. Martin, and A. Azapagic, “Environmental impacts of poultry litter gasification for power generation,” Energy Procedia, vol. 161, pp. 32–37, 2019, doi: 10.1016/j.egypro.2019.02.055.

M. Hejna, K. Świechowski, W. A. Rasaq, and A. Białowiec, “Study on the Effect of Hydrothermal Carbonization Parameters on Fuel Properties of Chicken Manure Hydrochar,” Materials, vol. 15, no. 16. 2022, doi: 10.3390/ma15165564.

R. Isemin, A. Mikhalev, O. Milovanov, and A. Nebyvaev, “Some Results of Poultry Litter Processing into a Fertilizer by the Wet Torrefaction Method in a Fluidized Bed,” Energies, vol. 15, p. 2414, Mar. 2022, doi: 10.3390/en15072414.

K. Sindhwani, P. Gupta, A. Kumar, and R. Srivastava, “Evaluation of Plastic Waste Management Methods Using Multi Criteria Decision Making Tool – AHP,” 2022.

A. Yulia, D. Helard, and V. S. Bachtiar, “Analysis of Sanitation Technology for Waste Management and Drainage Using the Analytical Hierarchy Process (AHP) Method in Bangko City,” Int. J. Res. Vocat. Stud., vol. 2, no. 3 SE-Articles, pp. 83–86, Dec. 2022, doi: 10.53893/ijrvocas.v2i3.147.

A. Chattopadhyay, S. Pal, G. Bandyopadhyay, and K. Adhikari, “A Multi-Attribute Decision-Making Model for Selecting Centralized or Decentralized Municipal Solid Waste Management Facilities: a Study from the Indian Perspective,” Process Integr. Optim. Sustain., vol. 7, no. 4, pp. 861–886, 2023, doi: 10.1007/s41660-023-00329-8.

J. Feng, “An integrated multi-criteria decision-making method for hazardous waste disposal site selection,” Environ. Dev. Sustain., vol. 24, no. 6, pp. 8039–8070, 2022, doi: 10.1007/s10668-021-01772-8.

H. Taherdoost, “Decision Making Using the Analytic Hierarchy Process ( AHP ); A Step by Step Approach Hamed Taherdoost To cite this version : HAL Id : hal-02557320 Decision Making Using the Analytic Hierarchy Process ( AHP ); A Step by Step Approach,” J. Econ. Manag. Syst., vol. 2, no. International, pp. 244–246, 2017, [Online]. Available: http://www.iaras.org/iaras/journals/ijems.

M. Amer and T. U. Daim, “Selection of renewable energy technologies for a developing county: A case of Pakistan,” Energy Sustain. Dev., vol. 15, no. 4, pp. 420–435, 2011, doi: 10.1016/j.esd.2011.09.001.

A. Antony and A. I. Joseph, “Influence of Behavioural Factors Affecting Investment Decision—An AHP Analysis,” Metamorphosis, vol. 16, no. 2, pp. 107–114, Nov. 2017, doi: 10.1177/0972622517738833.

H. Esen, “Analytical Hierarchy Process Problem Solution,” F. De Felice and A. Petrillo, Eds. Rijeka: IntechOpen, 2023, p. Ch. 1.

L. Lijó, N. Frison, F. Fatone, S. González-García, G. Feijoo, and M. T. Moreira, “Environmental and sustainability evaluation of livestock waste management practices in Cyprus,” Sci. Total Environ., vol. 634, pp. 127–140, 2018, doi: 10.1016/j.scitotenv.2018.03.299.

S. A. Gebrezgabher, M. P. M. Meuwissen, and A. G. J. M. Oude Lansink, “A multiple criteria decision making approach to manure management systems in the Netherlands,” Eur. J. Oper. Res., vol. 232, no. 3, pp. 643–653, 2014, doi: 10.1016/j.ejor.2013.08.006.

N. S. Md Zaini, N. E. A. Basri, S. Md Zain, and N. F. M. Saad, “Selecting the best composting technology using analytical hierarchy process (AHP),” J. Teknol., vol. 77, no. 1, pp. 1–8, 2015, doi: 10.11113/jt.v77.3180.

P. Boonkanit and S. Kantharos, “An AHP for Prioritizing and Selecting Industrial Waste Management Method Case Study: Map Ta Phut Industrial Estate,” Appl. Mech. Mater., vol. 848, no. July, pp. 251–254, 2016, doi: 10.4028/www.scientific.net/amm.848.251.

A. Kurbatova and H. A. Abu-Qdais, “Using Multi-Criteria Decision Analysis to Select Waste to Energy Technology for a Mega City: The Case of Moscow,” Sustain., vol. 12, no. 23, pp. 1–18, 2020.

J. Bernstein, “Social assessment and public participation in municipal solid waste management,” Jan. 2004.

S. Bandara, C. Chaichana, and N. Borirak, “Assessing the Sustainability of Broiler Waste Management Strategies in Thailand through Analytical Hierarchy Process Analysis,” vol. 05, no. 01, pp. 128–136, 2024.




DOI: https://doi.org/10.46676/ij-fanres.v6i2.435

Refbacks

  • There are currently no refbacks.


E-ISSN : 2722-4066

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

slot online

slot88

slot88

slot777

slot gacor

slot dana

slot gacor

slot qris

slot qris

slot thailand

slot thailand

slot88 terpercaya

slot88 resmi

geo138

slot gacor

https://theamericanmadepodcast.com/
  • STM88 adalah Bandar Togel Resmi Terbesar se-Asia yang memberikan layanan profesional, sistem keamanan tinggi, serta peluang menang yang transparan, STM88 mampu meraih kepercayaan jutaan pemain.