The valorization of the functional potential of tomato processed waste


Utpalakshya Das, Subhajit Ray


Abstract


This investigation aimed to undertake an effective waste management strategy by valorizing the functional potential of thermally processed tomato processed waste fragments collected from three different zones of different states of India viz. Shillong (Sample A, Meghalaya), Falakata (Sample B, West Bengal), and Jalpaiguri (Sample C, West Bengal). Thermal processing of fragmented waste samples prior to the extraction process was carried out with three different drying techniques viz. solar drying, hot air oven drying, and combined drying. The experimental investigation with a comparative design revealed that the total phenolic content (TPC), lycopene content, and β-carotene content of solar dried waste fragments derived from samples A & B are significantly higher than those in sample C. Moreover, the sun-dried  pomace fraction of tomato waste contains the maximum amount of bioactive components viz. lycopene (303.452mg/kg in sample A, 297.96 mg/kg in sample B, and 203.583 mg/kg in sample C),  β-carotene content (299.6mg/kg in sample B, 299.1mg/kg in sample A, and 223.004 mg/kg in sample C) and total phenolic content (6.8698mg/kg in sample B, 5.9541mg/kg in sample A, and 5.7915mg/kg in sample C) followed by skin lycopene (282.297mg/kg in sample A, 276.8 mg/kg in sample B, and 182.603 mg/kg in sample C); β-carotene (280.41mg/kg in sample A, 278.002mg/kg in sample B, and 188.258 mg/kg in sample C) and total phenolics (6.4413mg/kg in sample B, 5.2633mg/kg in sample A, and 5.0223mg/kg in sample C) and seed lycopene (276.8mg/kg in sample B, 86.746 mg/kg in sample A, and 62.163mg/kg in sample C); β- carotene (85.23mg/kg in sample B, 84.01mg/kg in sample A, and 66.23mg/kg in sample C) and total phenolics (5.9228mg/kg in sample B followed by 4.6602mg/kg in sample A and 4.641mg/kg) respectively. The solar drying technique is considered to be a novel pretreatment process compared to other treatments e.g., oven drying, and combined drying, in the efficacy of extraction of bioactive components from tomato processed waste fractions due to its lower impact on heat-sensitive biomaterials.


Full Text:

PDF

References


FAOSTAT. (2014). Food and Agriculture Organization Statistics Data base. Retrieved fromhttp://www.fao.org/faostat/en/#data.

WPTC (The World Processing Tomato Council). (2015). World production estimate as of 15 October2 015. Retrieved January10, 2017, fromwww.wptc.to/

Toor, R.K., & Savage, G.P. (2005). Antioxidant activity in different fractions of tomatoes. Food Research International, 38(5), 487-494. https://doi.org/10.1016/j. foodres.2004.10.016..

Dorais, M., Ehret, D.L., & Papadopoulos, A.P. (2008). Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochemical Review 7(2): 231-250. https://doi.org/ 10.1007/s11101-007- 9085-x.

Kong, K.-W., Khoo, H.-E., Prasad, K. N., Ismail, A., Tan, C.-P., & Rajab, N. F. (2010). Revealing the power of the natural red pigment lycopene. Molecules, 15, 959987.doi:10.3390/ molecules15020959

Persia, M. E., Parsons, C. M., Schang, M., & Azcona, J. (2003). Nutritional evaluation of dried tomato seeds. Poultry Science, 82, 141–146.doi:10.1093/ps/82.1.141

King, A. J., & Zeidler, G. (2004). Tomato pomace may be a good source of vitamin E in broiler diets. California Agriculture, 58, 59–62.doi:10.3733/ca.v058n01p59

Nobre, B. P., Palavra, A. F., Pessoa, F. L. P., & Mendes, R. L. (2009). Supercritical CO2 extraction of trans-lycopene from Portuguese tomato industrial waste. FoodChemistry,116,680685.doi:10.1016/j.foodchem.2009.03.011

Grassino, A. N., Brnčić, M., Vikić-Topić, D., Roca, S., Dent, M., & Brnčić, S. R. (2016). Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chemistry, 198, 93–100. doi:10.1016/j. food chem 2015.11.095

Tommonaro, G., Poli, A., De Rosa, S., & Nicolaus, B. (2008). Tomato derived polysaccharides for biotechnological applications: Chemical and biological approaches. Molecules,13,1384–1398. doi:10.3390/ molecules 13061384

Di Donato, P., Fiorentino, G., Anzelmo, G., Tommonaro, G., Nicolaus, B., & Poli, A. (2011). Re-use of vegetable wastes as cheap substrates for extremophile biomass production. Waste & Biomass Valorization, 2(2), 103111.doi:10.1007/s12649-011-9062-x

Moayedi, A., Hashemi, M., & Safari, M. (2016). Valorization of tomato waste proteins through production of antioxidant and antibacterial hydrolysates by proteolytic Bacillus subtilis: Optimization of fermentation conditions. Journal of Food Science and Technology-Mysore,53(1),391–400.doi:10.1007/s13197-015-1965-2

Zuorro, A., Lavecchia, R., Medici, F., & Piga, L. (2014). Use of cell wall degrading enzymes for the production of high-quality functional products from tomato processed waste. Chemical Engineering Transactions, 38355360.doi:10.3303/CET1438060

García, M. L., Calvo, M. M., & Selgas, M. D. (2009). Beef hamburgers enriched in lycopene using dry tomato peel as an ingredient. Meat Science, 83, 45–49. doi:10.1016/j.meatsci.2009.03.009

Calvo, M. M., García, M. L., & Selgas, M. D. (2008). Dry fermented sausages enriched with lycopene from tomatopeelmeatScience,80,167172.doi:10.1016/j.meatsci.2007.11.016

Alves, A. B., Bragagnolo, N., Da Silva, M. G., Skibsted, L. H., & Orlien, V.(2012).Antioxidant protection of high-pressure processed minced chicken meat by industrial tomato products. Food and Bio-products processing,90,499505. doi:10.1016 /j.fbp.2011.10.004

Benakmoum, A., Abbeddou, S., Ammouche, A., Kefalas, P., & Gerasopoulos, D. (2008). Valorisation of low quality edible oil with tomato peel waste. Food Chemistry,110, 684690.doi: 10.1016/j.foodchem.2008.02.063

Nour, V., Ionica, M. E., & Trandafir, I. (2015). Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste.18.Journal of Food Science and Technology Mysore,52,8260–8267.doi:10.1007/s13197-015-1934-9

Altan, A., McCarthy, K. L., & Maskan, M. (2008). Evaluation of snack foods from barley-tomato pomace blends by extrusion processing. Journal of FoodEngineering,84,231242.doi:10.1016/j.jfoodeng.2007.05.014.

Nagata,M., and Yamashita,I., (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon ShakuhinKogio Gakkaish,39,925-928

V. L. Singleton, Joseph A. Rossi, Colorimetry of Total Phenolics with Phosphomolybdic - Phosphotungstic Acid Reagents, American Journal of Enology and Viticulture. January 1965 16: 144-158; published ahead of print January 01, 1965.

Nour, V., Panaite, T. D., Ropota, M., Turcu, R., Trandafir, I., & Corbu, A. R. (2018). Nutritional and Bioactive Compounds in Dried Tomato processed waste. CyTA Journal of Food, 16, 222–229. doi: 10. 1080/19476337.2017.1383514.

Luengo, E., Condón-Abanto, S., Condón, S, Álvarez, I., & Raso J. (2014). Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Separation Purification Technology, 136,130- 136. https:// doi.org / 10.1016/ j.seppur.2014. 09.008.

Aksoylu Özbek, Z., Çelik, K., Günç Ergönül, P., & Hepçimen, A., Z. (2020). A Promising Food Waste for Food Fortification: Characterization of Dried Tomato Pomace and Its Cold Pressed Oil. Journal of Food Chemistry and Nanotechnology, 6(1), 9-17. https://doi.org/10.17756/jfcn.2020-078.

Bhat, M.A., & Ahsan, H. (2018). Quality characteristics of freeze and cabinet dried tomato pomace. International Journal of Pure and Applied Biosciences, 6(2),891-897. https://doi. org/10.18782/2320-7051.4044.

Liadakis, G.N., Tzia, C., Oreopoulou, V., & Thomopoulos, C.D. (1995). Protein Isolation from tomato seed meal extraction optimization. Journal of Food Science, 60(3), 477-482. https://doi.org/10.1111/j.1365-2621.1995.tb09807.x.

Fărcaş, A.C., Socaci, S.A., Michiu, D., Biriş, S., & Tofană, M. (2019). Tomato waste as a source of biologically active compounds. Bulletin UASVM Food Science and Technology, 73(2), 55-60.

Ida Bagus Suryaningrat, Elida Novita, Uswatun Kasanah. 2020. Cleaner Production Practices in Agroindustry: A Case of Small Scale Cheese Factory in Indonesia. International Journal of Food, Agriculture, and Natural Resources. Vol 1 (1):19-23. https://doi.org/10.46676/ij-fanres.v1i1.5

P. Kumaran, S. Natarajan, R. Shanmuga Raj, S. Dhanaraj, V. Rubesh Kumar. 2021. Performance and emissions on VCR diesel engine with turbocharger setup running using tomato seed oil. Materials Today: Proceedings. Vol 45. https://doi.org/10.1016/j.matpr.2020.10.080.




DOI: https://doi.org/10.46676/ij-fanres.v3i2.95

Refbacks

  • There are currently no refbacks.


E-ISSN : 2722-4066

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.