Physicochemical Properties of Apple Snail Protein Hydrolysate (Pila ampullacea) and its Potential as Flavor Enhancer


Erika Puspitasari, Dedin Finatsiyatull Rosida, Andre Yusuf Trisna Putra, Anugerah Dany Priyanto


Abstract


ple snail is a source of animal protein that has a high enough protein. Protein can be hydrolyzed by natural proteases, which one is bromelain. Enzymatic hydrolysis can produce hydrolysates containing peptides and amino acids that contribute to umami taste. The purpose of this study was to determine the effect of hydrolysis time and bromelain concentration on the physicochemical properties of apple snail hydrolysate. The optimal result in this study were used as natural flavor enhancer. This study used a completely randomized design with two factors. Factor I was the hydrolysis time (6 hours, 12 hours, and 18 hours) and factor II was the concentration of the bromelain (5%, 10%, and 15%). Based on the results showed that apple snail hydrolysate was influenced by hydrolysis time and bromelain concentration. The optimal result in this study was 18 hour hydrolysis treatment with 15% bromelain enzyme concentration had a yield 68.16%, degree of hydrolysis 72.09%, soluble protein 9.03%, total peptide 10.84 mg/mL, and glutamic acid 107.47 ppm. The application of apple snail protein hydrolysate  give characteristics of flavor enhancers as follows: soluble protein 7.76%, glutamic acid  99.42 ppm, solubility 94.79%, water absorption 5.80 mL/g, hedonic test color 4.10 (neutral), aroma 5.05 (like slightly), and taste 5.10 (like slightly).

Full Text:

PDF

References


Mualim, A., Lestari, S., & Hanggita, S. 2013. Kandungan Gizi dan Karakteristik Mi Basah dengan Subtitusi Daging Keong Mas (Pomacea canaliculata). Fishtech, Vol. 2 (1): 74–82.

Obande, R. A., Omeji, S., & Isiguzo, I.. 2013. Proximate Composition and Mineral Content of the Fresh Water Snail (Pila ampullacea) from River Benue, Nigeria. IOSR J. Environ. Sci. Toxicol. Food Technol., Vol. 2 (6): 43–46. doi: 10.9790/2402-0264346

Amiza, M. A., Ow, Y. W., & Faazaz, A. L. 2013. Physicochemical Properties of Silver Catfish (Pangasius sp.) Frame Hydrolysate. Int. Food Res. J., Vol. 20 (3): 1255–1262.

Nathania, D. S. & Bratadireja, M. A. 2018. Review : Isolasi dan Uji Stabilitas Enzim Bromelin dari Nanas (Ananas comosus L.). Farmaka, Vol. 16 (1): 374–379. https://doi.org/10.24198/jf.v16i1.17508

Priya, S. E., Jayakumar, K., Mathai, V., Chintu, S., & Babu, S. K. 2012. Immobilization and Kinetic Studies of Bromelain: A Plant Cysteine Protease from Pineapple (Ananas comosus) Plant Parts. Int. J. Med. Heal. Sci., Vol. 1 (3): 10–16.

Moniruzzaman, M., Sku, S., Chowdhury, P., Tanu, M. B., Yeasmine, S., Hossen, M. N., Mahmud, Y. 2021. Nutritional Evaluation of Some Economically Important Marine and Freshwater Mollusc Species of Bangladesh. Heliyon, Vol. 7 (5). https://doi.org/10.1016/j.heliyon.2021.e07088

Emrerk, T., Rungsardthong, V., Vatanyoopaisarn, S., Thumthanaruk, B., Tamaki, Y., & Kuraya, E. 2020. Processed flavors derived from combined bromelain hydrolyzed jellyfish protein hydrolysate, reducing sugars and arginine. Sci. Eng. Heal. Stud., Vol. 15. https://doi.org/10.14456/sehs.2021.4

Witono, Y., Fauziah, R. R., Windrati, W. S., Taruna, I., Azkiyah, L., & Wijayanti, R. P. 2019. Formulation of Flavor Enhancer from Common Barb (Rasbora jacobsoni) Protein Hydrolysate. AIP Conf. Proc., Vol. 2199. https://doi.org/10.1063/1.5141311

Sukkhown, P., Jangchud, K., Lorjaroenphon, Y., & Pirak, T. 2018. Flavored-Functional Protein Hydrolysates from Enzymatic Hydrolysis of Dried Squid By-Products: Effect of Drying Method. Food Hydrocoll., Vol. 76: 103–112. doi: 10.1016/j.foodhyd.2017.01.026

Erpiana. 2018. Studi Pembuatan Dangke dengan menggunakan Ekstrak Enzim Bromelin Kasar dari Batang Nanas (Ananas comasus L. Mer). [Skripsi]. University of Hasanuddin Makassar.

Ridzuan, N. A. M., Shaarani, S. M., Arshad, Z. I. M., Masngut, N., Zainol, N., & Shariffuddin, J. H. 2020. Study on Enzyme Activities in Pineapple Fruit and Pineapple Waste to be Applied as Poultry Supplement. IOP Conf. Ser. Mater. Sci. Eng., Vol. 991 (1): 1-8. doi: 10.1088/1757-899X/991/1/012064

AOAC. 2005. Official Methods of Analysis. Maryland: Association of Official Analytical International.

Muyassaroh, Dewi, R. K., & Minah, F. N. 2020. Penentuan Kadar Protein pada Spirulina Platensis menggunakan Metode Lowry dan Kjeldahl. J. Tek. Kim., Vol. 15 (1): 40-45. https://doi.org/10.33005/jurnal_tekkim.v15i1.2304

Yang, X., Li, Y., Li, S., Ren, X., Olayemi Oladejo, A., Lu, F., & Ma, H. 2020. Effects and Mechanism of Ultrasound Pretreatment of Protein on the Maillard Reaction of Protein-Hydrolysate from Grass Carp (Ctenopharyngodon idella). Ultrason. Sonochem., Vol. 64: 1-9. doi: 10.1016/j.ultsonch.2020.104964

Khokhani, K., Ram, V., Bhatt, J., Khatri, T., & Joshi, H. 2012. Spectrophotometric and Chromatographic Analysis of Amino Acids Present in Leaves of Ailanthus excelsa. Int. J. ChemTech Res., Vol. 4 (1): 389–393.

Hasrini, R. F., Zakaria, F. R., Adawiyah, D. R., & Suparto, I. H. 2017. Mikroenkapsulasi Minyak Sawit Mentah dengan Penyalut Maltodekstrin dan Isolat Protein Kedelai. J. Teknol. dan Ind. Pangan, Vol. 28 (1): 10–19. https://doi.org/10.6066/jtip.2017.28.1.10

Ali, A., Wani, T. A., Wani, I. A., & Masoodi, F. A. 2016. Comparative Study of the Physico-Chemical Properties of Rice and Corn Starches Grown in Indian Temperate Climate. J. Saudi Soc. Agric. Sci., Vol. 15 (1): 75–82. https://doi.org/10.1016/j.jssas.2014.04.002

Mongkonkamthorn, N., Malila, Y., Yarnpakdee, S., Makkhun, S., Regenstein, J. M., & Wangtueai, S. 2020. Production of Protein Hydrolysate Containing Antioxidant and Angiotensin-I-Converting Enzyme (ACE) Inhibitory Activities from Tuna (Katsuwonus pelamis) Blood. Processes, Vol. 8 (11): 1–22. https://doi.org/10.3390/pr8111518

Hau, E. H., Amiza, M. A., Mohd Zin, Z., Shaharudin, N. A., & Zainol, M. K. 2020. Effect of Yellowstripe Scad (Selaroides leptolepis) Protein Hydrolysate in the Reduction of Oil Uptake in Deep-Fried Squid. Food Res., Vol. 4 (6): 1929–1936. doi: 10.26656/fr.2017.4(6).200

AOAC. 2006. Official Methods of Analysis 16th Edition. Maryland: Association of Official Analytical International.

Hamid, S. A., Halim, N. R. A., & Sarbon, N. M. 2015. Optimization of Enzymatic Hydrolysis Conditions of Golden Apple Snail (Pomacea canaliculata) Protein by Alcalase. Int. Food Res. J., Vol. 22(4): 1615–1622.

Mohan, R., Sivakumar, V., Rangasamy, T., & Muralidharan, C. 2016. Optimisation of Bromelain Enzyme Extraction from Pineapple (Ananas comosus) and Application in Process Industry. Am. J. Biochem. Biotechnol., Vol. 12 (3): 188–195. https://doi.org/10.3844/ajbbsp.2016.188.195

Poba, D., Ijirana, & Sakung, J.. 2019. Aktivitas Enzim Bromelin Kasar Berdasarkan Tingkat Kematangan Buah Nanas. J. Akad. Kim., Vol. 8 (4): 236–241.

Rosida, D. F., Priyanto, A. D., & Putra, A. Y. T. 2021. Effects of Papain Concentration and Hydrolysis Time on Degree of Hydrolysis and Glutamic Acid Content of Apple Snail Hydrolysate. International Seminar of Research Month 2020, 17–21. https://doi.org/10.11594/nstp.2021.0904

Putra, S. N. K. M., Ishak, N. H., & Sarbon, N. M. 2018. Preparation and Characterization of Physicochemical Properties of Golden Apple Snail (Pomacea canaliculata) Protein Hydrolysate as affected by Different Proteases. Biocatal. Agric. Biotechnol., Vol. 13: 123–128. https://doi.org/10.1016/j.bcab.2017.12.002

Haslaniza, H., M. Maskat, Y., Wan Aida, W. M., & Mamot, S. 2010. The Effects of Enzyme Concentration, Temperature and Incubation Time on Nitrogen Content and Degree of Hydrolysis of Protein Precipitate from Cockle (Anadara granosa) Meat Wash Water. Int. Food Res. J., Vol. 17 (1): 147–152.

Saallah, S., Ishak, N. H., & Sarbon, N. M. 2020. Effect of Different Molecular Weight on the Antioxidant Activity and Physicochemical Properties of Golden Apple Snail (Ampullariidae) Protein Hydrolysates. Food Res., Vol. 4 (4): 1363–1370. doi: 10.26656/fr.2017.4(4).348

Seniman, M. S. M., Yusop, S. M., & Babji, A. S. 2014. Production of Enzymatic Protein Hydrolysates from Freshwater Catfish (Clarias batrachus). AIP Conf. Proc., Vol. 1614 (323): 323–328. https://doi.org/10.1063/1.4895216

Putra, A. Y. T., Rosida, D. F., & Priyanto, A. D. 2020. Effect of Hydrolysis time and Papain Concentration on Some Properties of Apple Snail (Pilla ampullacea) Hydrolysate. Int. J. Eco-Innovation Sci. Eng., Vol. 1 (2): 1–5. https://doi.org/10.33005/ijeise.v1i02.31

Anggraini, A. & Yunianta. 2015. Pengaruh Suhu dan Lama Hidrolisis Enzim Papain terhadap Sifat Kimia, Fisik dan Organoleptik Sari Edamame. J. Pangan & Agroindustri, Vol. 3 (3): 1015–1025.

Witono, Y. 2014. Teknologi Flavor Alami. Surabaya: Pustaka Radja.

Ovissipour, M., Rasco, B., Shiroodi, S. G., Modanlow, M., Gholami, S., & Nemati, M. 2013. Antioxidant Activity of Protein Hydrolysates from Whole Anchovy Sprat (Clupeonella engrauliformis) Prepared using Endogenous Enzymes and Commercial Proteases. J. Sci. Food Agric., Vol. 93 (7): 1718–1726. doi: 10.1002/jsfa.5957

Dardiri, A. B. 2015. Karakteristik Flavor Enhancer dari Hidrolisat Protein Ikan Inferior. [Skripsi]. University of Jember.

Supraptiah, E. & Ningsih, A. S., Zurohaina. 2019. Optimasi Temperatur dan Waktu Pengeringan Mi Kering yang Berbahan Baku Tepung Jagung dan Tepung Terigu. J. Kinet., Vol. 10 (2): 42–47.

Junianto, Afrianto, E., & Hasan, Z. 2020. Functional Properties and Proximate Compositions of Bony Barb Protein Hydrolysated. Egypt. J. Aquat. Biol. Fish., Vol. 24 (6) 331–341. doi: 10.21608/ejabf.2020.112861

Bao, Z., Zhao, Y., Wang, X., & Chi, Y. 2017. Effects of Degree of Hydrolysis (DH) on the Functional Properties of Egg Yolk Hydrolysate with Alcalase. J Food Sci Technol, Vol. 54 (3): 669–678. doi: 10.1007/s13197-017-2504-0

Wijayanti, R. P. 2016. Formulasi Flavor Enhancer dari Hidrolisat Protein Ikan Wader (Rasbora jacobsoni). [Skripsi]. University of Jember.

Benjakul, S., Yarnpakdee, S., Senphan, T., Halldorsdottir, S. M., & Kristinsson, H. G. 2014. Fish Protein Hydrolysates: Production, Bioactivities, and Applications. Antioxidants Funct. Components Aquat. Foods, 237-281. https://doi.org/10.1002/9781118855102.ch9

Banjongsinsiri, P., Pasakawee, K., Noojuy, N., Taksima, T., & Rodsuwan, U. 2016. Production of Mushroom Protein Hydrolysates by Enzymatic Hydrolysis and their Physicochemical Properties. Food Appl. Biosci. J., Vol. 4 (3): 161–170. https://doi.org/10.1002/9781118855102.ch9

Yuli Witono, Ardiyan Dwi Masahid, Maria Belgis, Zuida Amalina Rizky. 2021. The Optimization of Catfish Smart Flavor Production by Biduri and Papain Enzymatic Hydrolysis. International Journal of Food, Agriculture, and Natural Resources . Vol 2 (3):20-23. https://doi.org/10.46676/ij-fanres.v2i3.46

Ardiyan Dwi Masahid, Maria Belgis, Helyas Vintan Agesti. 2021. Functional Properties Of Adlay Flour (Coix Lacryma-Jobi L. Var. Ma-Yuen) Resulting From Modified Durations Of Fermentation Using Rhizopus Oligosporus. International Journal of Food, Agriculture, and Natural Resources . Vol 2 (2):1-6. https://doi.org/10.46676/ij-fanres.v2i2.32




DOI: https://doi.org/10.46676/ij-fanres.v3i1.74

Refbacks

  • There are currently no refbacks.


E-ISSN : 2722-4066

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.