Integrated Disease Management, Combining Chemical and Bio-control Agents, is Effective Against Agroathelia rolfsii Infecting Eggplants


Elias Mjaika Ndifon


Abstract


The seeds of Guibourtia coleosperma serve as potential Agroathelia rolfsii severely infects 500 plant species causing stem and root rots on plants including eggplants. This study evaluated the compatibility of integration of chemical fungicides x biological agents for the management of recalcitrant disease agents like A. rolfsii.  A factorial trial was set up using the completely randomized design with each treatment being replicated thrice. Interaction of Mancozeb (at 50 and 100% concentrations) x Trichoderma species caused 29.3-100% inhibition of A. rolfsii and Ketoconazole (at 50 and 100% concentrations) x Trichoderma species caused 95.8-100% inhibition of A. rolfsii. Mancozeb (100% concentration) x T. harzianum controlled the pathogen most, followed by the T. viride combination. The percentage inhibition by chemical fungicide (main effects) ranged from 100% inhibition by Ketoconazole (100% concentration) to 97.9-100% for Ketoconazole (50% concentration), to 65.2-93.6% for Mancozeb (100% concentration) and lastly 23.3-78.6% for Mancozeb (50% concentration) with time. The percentage inhibition (main effects) ranged from 60.3-96.7% for T. virens, 60.8-92.1% for T. harzianum, and 69.3-95.8% for T. viride with time. The chemical fungicides and Trichoderma species were highly positively correlated (0.522** at p ≤ 0.05). The high concentrations of the fungicides antagonized the Trichoderma species as well, so more work should be carried out on this aspect. This approach to disease management for eggplants is highly effective using chemical x bio-control agents to safeguard eggplants from A. rolfsii. Applying this method can protect crops and result in long-term profitability. The combination of fungicides and biocontrol agents is strongly recommended for the management of this fungal pathogen.

Full Text:

PDF

References


M. Ali, M. Z. Alam and M. A. M. Akanda, ‘Grafting: A technique of control soil borne diseases of tomato and eggplant. Institute of Post graduate Studies in Agriculture, Gazipur-1703. Bangladesh,’ IPSA-JICA publication, no. 4, 10 pages, 1994.

V. G. Rao, D. N. Dhutraj, K. T. Apet, C. V. Ambadkar and K. D. Navgire, ‘Integrated management of Fusarium wilt of eggplant,’ International Archive of Applied Science and Technology, 12(2), 16-24, 2021. DOI:10.15515/iaast.0976-4828.12.2.1624.

L. F. El-Gaied, A. A. El-Heba and A. N. El-Sherif, ‘Effect of growth hormones on some antioxidant parameters and gene expression in tomato,’ GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 4, 67-73, 2013.

A. Sacco, A. Matteo, N. Lombardi, N. Trotta, B. Punzo, A. Mari, et al., ‘Quantitative trait loci pyramiding for fruit quality traits in tomato,’ Molecular, 2013.

S. A. Sora, D. Belew and E. Etissa, ‘Evaluation of tomato (Solanum lycopersicum L.) varieties under different salt stress levels,’ International Journal on Food, Agriculture, and Natural Resources, 5(2), 67-76, 2024. https://doi.org/10.46676/ij-fanres.v5i2.240

M. S. Attia, A. H. Hashem, A. A. Badawy, and A. M. Abdelaziz, ‘Biocontrol of early blight disease of eggplant using endophytic Aspergillus terreus: improving plant immunological, physiological and antifungal activities,’ Botanical Study, 63, 26. 2022. DOI:10.1186/s40529-022-00357-6

A. Adandonon, T. A. S. Aveling, N. Labuschagne and M. Tamo. ‘Biocontrol agents in combination with Moringa oleifera extract for integrated control of Sclerotium-caused cowpea damping-off and stem rot’. European Journal of Plant Pathology, 2006. DOI:10.1007/s10658-006-9031-6.

S. Sneha, S. Maurya and A.K. Choudhary, ‘Antifungal efficacy of garlic and ginger against Sclerotium rolfsii,’ International Journal of Agricultural Science and Research, 6(6), 419-424. 2016. www.tjprc.org.

F. Ünal, A. Aşkın, E. Koca, M. Yıldırır and M. Ü.Bingöl, ‘Mycelial compatibility groups, pathogenic diversity and biological control of Sclerotium rolfsii on turfgrass,’ Egyptian Journal of Biological Pest Control, 29(44), 2019.

C. Dilbo, M. Alemu, A. Lencho and T. Hunduma, ‘Integrated management of garlic white rot (Sclerotium cepivorum Berk) using some fungicides and antifungal Trichoderma species’. Journal of Plant Pathology and Microbiology, 6, 251, 2015. DOI:10.4172/2157-7471.1000251.

T. H. Bekriwala, K. Nath and D. A. Chaudhary, ‘Effect of age on susceptibility of groundnut plants to Sclerotium rolfsii Sacc. caused stem rot disease,’ Journal of Plant Pathology and Microbiology, 7, pages 386, 2016. DOI: 10.4172/2157-7471.1000386.

M. A. Farooq, A. Abbasi, M. N. Naqqash, B. Atta, M. Arshad and M. Fatima, ‘Evaluation of integrated pest management modulation for mitigation of pesticide residues in mango,’ Pesquisa Agropecuária Tropical (PAT) [Agricultural Research in the Tropics], 54, e77681, 2024. www.agro.ufg.br/pat.

U. Arain, M. J. Dars, A. A. Ujjan, H. B. Bozdar, A. Q. Rajput and S. Shahzad, ‘Compatibility of myco-fungicide isolate (Trichoderma harzianum Rifai) with fungicides and their in-vitro synergism assessment,’ Pakistan Journal of Phytopathology, 34(2), 147-155, 2022. DOI:10.33866/phytopathol.034.02.0763.

A. Kumar, R. D. Bansal. and Y. K. Chelak, ‘Compatibility of Trichoderma viride with fungicides for plant disease management,’ International Journal of Pure and Applied Bioscience, 7(3), 44-51, 2019. http://dx.doi.org/10.18782/2320-7051.7333.

H. L. Barnett and B. B. Hunter, ‘Illustrated genera of imperfect fungi,’ 3rd edition, Burgess Publishing Co., Minneapolis. 241 pages, 1972.

E. M. Ndifon, ‘Inhibitory efficacy of microbial, botanical and synthetic fungicides against Athelia rolfsii (Sclerotium stem rot) of groundnut and Bambara groundnut,’ Tropical Agricultural Research and Extension, 25(1), 14-22, 2022a. http://doi.org/10.4038/tare.v25i1.5563.

M. Jibat and S. Alo, ‘Integrated management of black pod (Phytophthora palmivora) disease of cocoa through fungicides and cultural practices in Southwestern Ethiopia,’ International Journal on Food, Agriculture, and Natural Resources, 4(3), 43-45, 2023. https://doi.org/10.46676/ij-fanres.v4i3.150

L. Tamm, B. Thürig, C. Bruns, J. G. Fuchs, U. Köpke, M. Laustela, C. Leifert, N. Mahlberg, B. Nietlispach, C. Schmidt, F. Weber and A. Fliebach, ‘Soil type, management history, and soil amendments influence the development of soil-borne (Rhizoctonia solani, Pythium ultimum) and air-borne (Phytophthora infestans, Hyaloperonospora parasitica) diseases,’ European Journal of Plant Pathology, 127: 465-481, 2010.

G. Innerebner, B. Knapp, T. Vasara, M. Romantschuk and H. Insam, ‘Traceability of ammonia-oxidizing bacteria in compost-treated soils’. Soil Biology and Biochemistry, 38: 1092–1100, 2006.

E. M. Amare. ‘Biochar soil amendment: effect on soil, crop performance, and diseases resistance’. International Journal on Food, Agriculture, and Natural Resources, 4(4), 82-87, 2023. https://doi.org/10.46676/ij-fanres.v4i4.204

La Mudi, Z. Abidin, R. R. Manullang and S. Agus, ‘Application of Rhizobacteria to control Phytophthora capsici disease causes stem base rot and increase growth of pepper seedlings in-vivo,’ International Journal on Food, Agriculture, and Natural Resources, 5(1), 80-84, 2023. https://doi.org/10.46676/ij-fanres.v5i1.245

C. Tanapichatsakul, A. Pansanit, S. Monggoot, S. Brooks, S. Prachya, P. Kittakoop, et al., ‘Antifungal activity of 8-methoxynaphthalen-1-ol isolated from the endophytic fungus Diatrype palmicola MFLUCC 17-0313 against the plant pathogenic fungus Athelia rolfsii on tomatoes,’ PeerJ, 8, e9103, 2020. https://doi.org/10.7717/peerj.9103

W. G. Herrera, O. Valbuena and D. Pavone, ‘Formulation of Trichoderma asperellum TV190 for biological control of Rhizoctonia solani on corn seedlings,’ Egyptian Journal of Biological Pest Control, 30(1). 2020. DOI:10.1186/s41938-020-00246-9

E. M. Ndifon, ‘Appraisal of fungi leaf spots of groundnut (Arachis hypogea) and control of Cylindrocladium blight disease using biocontrol, botanical, and chemical measures’. Biotech Studies, 31(2), 71-78, 2022b. http://doi.org/10.38042/biotechstudies.1190215.

N. P. Maheshwary, N. . Gangadhara, C. Amoghavarsha, M. K. Naik, K. M. Satish and M. S. Nandish, ‘Compatibility of Trichoderma asperellum with fungicides,’ The Pharma Innovation Journal, 9(8), 136-140, 2020. http://www.thepharmajournal.com.

E. M. Ndifon, ‘Inhibitory efficacy of selected botanical, microbial and synthetic pesticides against Colletotrichum alatae, causing water yam anthracnose disease,’ Cell Biology and Development, 7(1), 41-46, 2023. DOI:10.13057/Cellbioldev/v070106.

H. M. Shashikumar, K. Sumangala and S. E. Navyashree, ‘Compatibility of Trichoderma viride and Trichoderma harzianum with fungicides against soil borne diseases of tomato and cabbage,’ International Journal of Current Microbiology and Applied Science, 8(4), 1920-1928, 2019. https://doi.org/10.20546/ijcmas.2019.804.225.

L. C. Parraguirre, O. Romero-Arenas, M. D. L. A.Valencia De I. T. A., A. Rivera, J. D. M. Sangerman and M. Huerta-Lara, ‘In vitro study of the compatibility of four species of Trichoderma with three fungicides and their antagonistic activity against Fusarium solani,’ Horticulturae, 9, 905, 2023. https://doi.org/10.3390/horticulturae9080905.

E. M. Ndifon and P. Inyang, ‘In vitro efficacy of disparate fungicides against Lasiodiplodia theobromae root rots of orange-fleshed sweet potato varieties,’ Indonesian Journal of Agricultural Science, 23(2), 56–64, 2022. http//dx.doi.org/10.21082/ijas.v.23.n2.2022.p.56–64.




DOI: https://doi.org/10.46676/ij-fanres.v5i3.361

Refbacks

  • There are currently no refbacks.


E-ISSN : 2722-4066

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.