Characterization and classification of saline/sodic soils of Coba area of non-irrigated farmlands in Golina Watershed in Raya Valley, Amhara Region, Ethiopia
Abstract
The soil in the Coba area of the Golina watershed at Raya Kobo Valley contains various soluble salts and exchangeable sodium, magnesium, potassium, and calcium. However, excessive concentrations of these elements can affect soil processes and plant growth, with the impact varying based on concentration levels and plant types. To study the salt-affected soils in the area, we excavated one profile from non-irrigated fields and collected ten soil samples at 20 cm intervals in a two-meter profile. The samples were analyzed for chemical properties such as pH, soluble cations and anions, electrical conductivity, exchangeable cations (Ca, Mg, Na, and K), total nitrogen, organic carbon, available phosphorus, exchangeable sodium percentage, sodium absorption ratio, as well as physical characteristics such as soil color, texture, bulk density, and porosity. The analysis revealed that the non-irrigated soil profile had a pH of 7.4 to 8.5, electrical conductivity of 3.1 to 9.7 dsm-1, organic carbon of 0.4 to 1.5%, total nitrogen of 0.09 to 0.27%, available phosphorus of 25 to 46.5 mg kg-1, and a cation exchange capacity of 48.7 to 57.2 cmol (+) kg-1. Considering the top layers of the soil responsible for agricultural purposes, the electrical conductivity, exchangeable sodium percentage, and pH values indicate that the soil can be classified as saline-sodic soil for non-irrigated farmland.
Full Text:
PDFReferences
M. G. R. Rosyady, K. A. Wijaya, S. Avivi, and B. Kusmanadhi, “Pendampingan Pengolahan Metode Basah Di LMDH Argo Santoso, Desa Curapoh, Kecamatan Curahdami, Bondowoso,” Literasi J. Pengabdi. Masy. dan Inov., vol. 2, no. 2, pp. 1644–1650, 2022, doi: 10.58466/literasi.v2i2.672.
D. A. Savitri et al., “Caffeine Content of Bondowoso Arabica Ground Coffee with Variation of Roasting Profile and Type of Packages,” Pelita Perkeb. (a Coffee Cocoa Res. Journal), vol. 38, no. 2, pp. 128–137, 2022, doi: 10.22302/iccri.jur.pelitaperkebunan.v38i2.511.
I. W. Pangestika, A. Susilowati, and E. Purwanto, “Genetic diversity of coffea canephora pierre ex a. Froehner in temanggung district, indonesia based on molecular marker rapd,” Biodiversitas, vol. 22, no. 11, pp. 4775–4783, 2021, doi: 10.13057/biodiv/d221109.
Setiyono, A. Puspita Arum, S. S. Barbara Patricia, D. Ayu Savitri, F. Anggraini, and J. Iqbal Maulana, “Pendampingan Pengelolaan dan Pengolahan Pasca Panen Kopi SecaraBerkelanjutan di Desa Curahpoh Bondowoso,” J. Pengabdi. Magister Pendidik. IPA, vol. 7, no. 1, 2024, [Online]. Available: https://doi.org/10.29303/jpmpi.v7i1.6127.
D. A. Savitri, S. Setiyono, N. Novijanto, and R. M. Fajriati, “Defect Analysis and Development Strategy for Robusta Coffee of Tanahwulan Village, Indonesia,” J. La Lifesci, vol. 03, no. 01, pp. 14–25, 2022, doi: 10.37899/journallalifesci.v3i1.548.
I. Sulaiman, D. Hasni, I. Husaini, and N. Octaviana Maliza, “The Quality and Flavour Effects of Robusta Coffee Cultivated at Various Altitudes in Aceh Tengah District - Gayo Highlands were Investigated,” IOP Conf. Ser. Earth Environ. Sci., vol. 1356, no. 1, 2024, doi: 10.1088/1755-1315/1356/1/012001.
A. Santoso, S. Slameto, D. A. Savitri, D. E. Kusbianto, and H. M. Suud, “The Effect of Using Fast Roast and Slow Roast Roasting Techniques on the Chemical and Organoleptic Characteristics of Robusta Coffee Beans (Coffea robusta L.),” Int. J. Food, Agric. Nat. Resour., vol. 5, no. 1, pp. 95–99, 2024, doi: 10.46676/ij-fanres.v5i1.261.
B. Soeswanto, N. L. E. Wahyuni, and G. Prihandini, “The Development of Coffee Bean Drying Process Technology – A Review,” Proc. 2nd Int. Semin. Sci. Appl. Technol. (ISSAT 2021), vol. 207, no. Issat, pp. 164–170, 2021, doi: 10.2991/aer.k.211106.026.
L. S. Romano, G. S. Giomo, A. P. Coelho, V. A. Filla, and L. B. Lemos, “Characterization of Yellow Bourbon coffee strains for the production of differentiated specialty coffees,” Bragantia, vol. 81, 2022, doi: 10.1590/1678-4499.20210236.
N. R. S. Santos, M. B. Magat, M. V. Mondragon, E. P. Cao, and D. M. C. Santos, “Genetic profiling of locally registered Philippine coffee using molecular markers linked to resistance against diseases and pests,” Biodiversitas, vol. 24, no. 7, pp. 4136–4144, 2023, doi: 10.13057/biodiv/d240752.
J. C. Charr et al., “Complex evolutionary history of coffees revealed by full plastid genomes and 28,800 nuclear SNP analyses, with particular emphasis on Coffea canephora (Robusta coffee),” Mol. Phylogenet. Evol., vol. 151, p. 106906, Oct. 2020, doi: 10.1016/j.ympev.2020.106906.
V. Merot-L’anthoene et al., “Development and evaluation of a genome-wide Coffee 8.5K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea arabica L.,” Plant Biotechnol. J., vol. 17, no. 7, pp. 1418–1430, 2019, doi: 10.1111/pbi.13066.
A. Wibowo, M. R. Akbar, and U. Sumirat, “Heritability and Combining Ability of Some Vegetative and Yield Characteristics of Promising Arabica Coffee Varieties in Indonesia,” Pelita Perkeb. (a Coffee Cocoa Res. Journal), vol. 38, no. 1, pp. 1–9, 2022, doi: 10.22302/iccri.jur.pelitaperkebunan.v38i1.484.
M. Rakocevic and F. T. Matsunaga, “Variations in leaf growth parameters within the tree structure of adult Coffea arabica in relation to seasonal growth, water availability and air carbon dioxide concentration,” Ann. Bot., vol. 122, no. 1, pp. 117–131, Jun. 2018, doi: 10.1093/aob/mcy042.
T. Hariyadi, M. Djali, B. Nurhadi, and S. Rosniawaty, “The Effect of Freeze Drying and Determination of Heat Transfer on Various Maturity Levels of Robusta Coffee Fruits,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 12, no. 6, pp. 2537–2543, 2022, doi: 10.18517/ijaseit.12.6.14705.
Slameto, “Genetic diversity and molecular analysis using RAPD markers of banana cultivars in the five regions of East Java, Indonesia,” Biodiversitas, vol. 24, no. 9, pp. 5035–5043, 2023, doi: 10.13057/biodiv/d240947.
R. T. Probojati, D. Wahyudi, and L. Hapsari, “Clustering Analysis and Genome Inference of Pisang Raja Local Cultivars (Musa spp.) from Java Island by Random Amplified Polymorphic DNA (RAPD) Marker,” J. Trop. Biodivers. Biotechnol., vol. 4, no. 2, pp. 42–53, 2019, doi: 10.22146/jtbb.44047.
G. R. Aristya, R. S. Kasiamdari, R. Setyoningrum, and B. Larasati, “Genetic variations of strawberry cultivars of Fragaria x ananassa and Fragaria vesca based on RAPD,” Biodiversitas, vol. 20, no. 3, pp. 770–775, 2019, doi: 10.13057/biodiv/d200322.
R. R. Ramlan, Harnelly, and L. Fitri, “DNA Extraction and PCR Optimization of Coffea arabica L. and Coffea canephora Pierre ex A. Froehner,” J. Penelit. Pendidik. IPA, vol. 10, no. SpecialIssue, pp. 53–58, 2024, doi: 10.29303/jppipa.v10ispecialissue.7881.
M. Junaid, A. Purwantara, and D. Guest, “Fungal basidiomycete Ceratobasidium theobromae DNA obtained directly from cocoa petioles,” Biodiversitas, vol. 22, no. 7, pp. 2838–2843, 2021, doi: 10.13057/biodiv/d220734.
Ramlah, I. R. Aziz, M. B. Pabendon, and B. S. Daryono, “Method of dna extraction of local maize (Zea mays l.) Tana Toraja, South sulawesi, Indonesia using modification of buffer ctab (cethyl trimethyl ammonium bromide) without liquid nitrogen,” IOP Conf. Ser. Earth Environ. Sci., vol. 575, no. 1, 2020, doi: 10.1088/1755-1315/575/1/012163.
DOI: https://doi.org/10.46676/ij-fanres.v5i4.357
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.