The Potential of Trichoderma sp. as Biological Agent to Support the Germination of Corn Seeds (Zea Mays)

Betty Lahati, Zauzah Abdullatif, Fatmawati Kaddas, Martini Labaradji


This research is motivated by the fact that corn seeds in storage are often characterized with low seed viability and infected by diseases so that the seeds grow abnormally and even die. Corn seeds have thick/hard cell walls. It is acknowledged that the corn seed walls contain cellulose, which can be broken down by microorganisms. One such microorganism is the Trichoderma fungus, which is also a biological agent. This study aims to analyze the effect of the biological agents Trichoderma sp. on corn seed germination and identify the best concentration of Trichoderma sp. against corn seed germination. The corn seeds used in this study were locally grown, which had been stored for 6 months. The seed coating (bio seed coating of local corn) was tested at several concentrations of Trichoderma sp. (treatment), namely without treatment (control), 5g, 10g, 15g, and 20g. Each concentration was repeated 4 times, using several parameters to analyze normal sprouts and germination capacity. The analysis results confirmed the potential of Thrichoderma biological agents on corn seed germination. The T1 treatment with 5g Trichoderma biological agents significantly improve corn seed germination.

Full Text:



Anonim, 2016.

Arrijani. 2005. Biologi dan konservasi marga Myristica di Indonesia. Biodiversitas

Copeland, L.O., M.B. McDonald. 2001. Principles of SeedScience and Technology, Edisi ke 4. Chapmond & Hall, New York, USASetiyowati, H., M. Surahman, S. Wiyono. 2007. Pengaruhpelapis benih dengan fungisida benomil dan tepungCurcuma terhadap patogen antraknosa terbawa benihdan viabilitas benih cabai besar (Capsicum annuumL.). Bul. Agron. 35:176-182.

Delgado- Sanchez, P., M. A. Ortega.- Amora., A. A.Rodríguez- Hernández., J.F. Jiménez-Bremon and J. Flores. 2010. Further evidence from the effect of fungi on breakingOpuntia seed dormancy . División deCiencias Ambientales; 2 División de Biología Molecular; Instituto Potosino de Investigación Científica y Tecnológica; SanLuis Potosi, Mexico.

Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews, 66(3), 506-577.

Sadjad, R. S. O. 1994. Sampled-Data Control Systems with Varying Sampling. Ph. D. Thesis.

Jariyah, L. A. Wicaksono, dan N. D. Septi. 2020. Corn-based wingko processing optimization using response surface methodology. International Journal on Food, Agriculture and Natural Resources. 1(2):28–33.

Astrodjojo, S., S. Sudjud, dan S. S. DAS. 2021. Effectiveness test of parasitization by parasitoid tricogramma japonicum in controlling white rice stem borer (scirphopaga innotata). International Journal on Food, Agriculture and Natural Resources. 2(1):25–30.

Zin, N. A. dan N. A. Badaluddin. 2020. Biological functions of trichoderma spp. for agriculture applications. Annals of Agricultural Sciences. 65(2):168–178.

Gaiss, S., D. Amarasiriwardena, D. Alexander, dan F. Wu. 2019. Tissue level distribution of toxic and essential elements during the germination stage of corn seeds (zea mays, l.) using la-icp-ms. Environmental Pollution. 252:657–665.

LIU, H. jun, W. dong DUAN, C. LIU, L. xue MENG, H. xu LI, R. LI, dan Q. rong SHEN. 2021. Spore production in the solid-state fermentation of stevia residue by trichoderma guizhouense and its effects on corn growth. Journal of Integrative Agriculture. 20(5):1147–1156.

Santos, M. F. dos, L. E. dos Santos, D. L. da Costa, T. A. Vieira, dan D. C. Lustosa. 2020. Trichoderma spp. on treatment of handroanthus serratifolius seeds: effect on seedling germination and development. Heliyon. 6(6):0–7.



  • There are currently no refbacks.

E-ISSN : 2722-4066

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.