Recent Advances in Genetically Engineered Microorganisms and their Risks: A Review


Jiregna Gari, Ibsa Teshome, Bekiyad Shasho


Abstract


Genetically engineered microorganisms have applications in various domains, such as agriculture, bioscience, healthcare, life sciences, and research. The novel methods of the system Clustered Regularly Interspaced Short Palindromic Repeats associated with protein 9, which originates from archaeal and bacterial immune systems and allows significant improvements to modified strains of microorganisms, represented a major innovation in industrial biotechnology. The rapid advancement of genetically engineered microorganisms has shown potential for bioremediation, food enzyme production, probiotics, and pesticides. Recently, engineered microbes have been used in several industries, like dairy, pharmaceuticals, biotech, and agrochemicals. Modified microorganisms used as biosensors are improved with reporter genes that induce their expression depending on the nature and concentration of the compound of interest to monitor environmental pollution. Genetically engineered microorganisms have been considered a threat to the environment, animals, and human health. Insertion of a single gene into different cells can result in diverse outcomes, and the general pattern of gene expression can be changed. More advanced and better techniques should be developed and applied in the genetic engineering of microbes to minimize risks.

Full Text:

PDF

References


G. Pant, D. Garlapati, U. Agrawal, R. G. Prasuna, T. Mathimani, and A. Pugazhendhi, “Biological approaches practised using genetically engineered microbes for a sustainable environment: A review,” Journal of Hazardous Materials, vol. 405, p. 124631, Mar. 2021, doi: 10.1016/j.jhazmat.2020.124631.

P. R. Yaashikaa, M. K. Devi, and P. S. Kumar, “Engineering microbes for enhancing the degradation of environmental pollutants: A detailed review on synthetic biology,” Environmental Research, vol. 214, p. 113868, Nov. 2022, doi: 10.1016/j.envres.2022.113868.

S. M. Jain, J. M. Al-Khayri, and D. V. Johnson, Eds., Date Palm Biotechnology. Springer Netherlands, 2011. doi: 10.1007/978-94-007-1318-5.

M. Deckers, D. Deforce, M.-A. Fraiture, and N. H. C. Roosens, “Genetically Modified Micro-Organisms for Industrial Food Enzyme Production: An Overview,” Foods, vol. 9, no. 3, p. 326, Mar. 2020, doi: 10.3390/foods9030326.

G. van den Eede et al., “The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants,” Food and Chemical Toxicology, vol. 42, no. 7, pp. 1127–1156, Jul. 2004, doi: 10.1016/j.fct.2004.02.001.

E. O. Melo, A. M. O. Canavessi, M. M. Franco, and R. Rumpf, “Animal transgenesis: state of the art and applications,” Journal of Applied Genetics, vol. 48, no. 1, pp. 47–61, Mar. 2007, doi: 10.1007/bf03194657.

M. F. Fathurrohim, “NARRATIVE REVIEW: STUDY OF MICROBIAL-BASED TIPPING POINTS AS HALAL FOOD PRODUCTS,” International Journal Mathla’ul Anwar of Halal Issues, vol. 2, no. 1, pp. 1–5, Mar. 2022, doi: 10.30653/ijma.202221.39.

E. Abatenh, B. Gizaw, Z. Tsegaye, and M. Wassie, “The Role of Microorganisms in Bioremediation- A Review,” Open Journal of Environmental Biology, vol. 2, no. 1, pp. 038–046, Nov. 2017, doi: 10.17352/ojeb.000007.

R. Singh, “Microorganism as a tool of bioremediation technology for cleaning environment: a review.” Proc Int Acad Ecol Environ Sci, vol. 4 no.1, pp.1, 2014.

P. Diep, R. Mahadevan, and A. F. Yakunin, “Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms,” Frontiers in Bioengineering and Biotechnology, vol. 6, Oct. 2018, doi: 10.3389/fbioe.2018.00157.

P. Berg and J. E. Mertz, “Personal Reflections on the Origins and Emergence of Recombinant DNA Technology,” Genetics, vol. 184, no. 1, pp. 9–17, Jan. 2010, doi: 10.1534/genetics.109.112144.

R. N. Philippe, M. De Mey, J. Anderson, and P. K. Ajikumar, “Biotechnological production of natural zero-calorie sweeteners,” Current Opinion in Biotechnology, vol. 26, pp. 155–161, Apr. 2014, doi: 10.1016/j.copbio.2014.01.004.

P. Hanlon and V. Sewalt, “GEMs: genetically engineered microorganisms and the regulatory oversight of their uses in modern food production,” Critical Reviews in Food Science and Nutrition, vol. 61, no. 6, pp. 959–970, Apr. 2020, doi: 10.1080/10408398.2020.1749026.

J. Yun et al., “Production of 1,3-propanediol using a novel 1,3-propanediol dehydrogenase from isolated Clostridium butyricum and co-biotransformation of whole cells,” Bioresource Technology, vol. 247, pp. 838–843, Jan. 2018, doi: 10.1016/j.biortech.2017.09.180.

E. M. Balciunas, F. A. Castillo Martinez, S. D. Todorov, B. D. G. de M. Franco, A. Converti, and R. P. de S. Oliveira, “Novel biotechnological applications of bacteriocins: A review,” Food Control, vol. 32, no. 1, pp. 134–142, Jul. 2013, doi: 10.1016/j.foodcont.2012.11.025.

A. L. Demain and J. L. Adrio, “Contributions of Microorganisms to Industrial Biology,” Molecular Biotechnology, vol. 38, no. 1, pp. 41–55, Dec. 2007, doi: 10.1007/s12033-007-0035-z.

K. Chojnacka, “Biosorption and bioaccumulation – the prospects for practical applications,” Environment International, vol. 36, no. 3, pp. 299–307, Apr. 2010, doi: 10.1016/j.envint.2009.12.001.

R. Tully, “Genetically Engineered Food Right-to-Know: Recommendations for Specific, Unthreatening, and Accurate GE Food Labels” 2015. doi:10.1016/b978-0-444-64114-4.00013-3

D. Sutay Kocabaş and R. Grumet, “Evolving regulatory policies regarding food enzymes produced by recombinant microorganisms,” GM Crops & Food, vol. 10, no. 4, pp. 191–207, Aug. 2019, doi: 10.1080/21645698.2019.1649531.

A. L. Demain and P. Vaishnav, “Production of recombinant proteins by microbes and higher organisms,” Biotechnology Advances, vol. 27, no. 3, pp. 297–306, May 2009, doi: 10.1016/j.biotechadv.2009.01.008.

N. Ferrer-Miralles, J. Domingo-Espín, J. L. Corchero, E. Vázquez, and A. Villaverde, “Microbial factories for recombinant pharmaceuticals,” Microbial Cell Factories, vol. 8, no. 1, Mar. 2009, doi: 10.1186/1475-2859-8-17.

F. Baneyx and M. Mujacic, “Recombinant protein folding and misfolding in Escherichia coli,” Nature Biotechnology, vol. 22, no. 11, pp. 1399–1408, Nov. 2004, doi: 10.1038/nbt1029.

B. Sharma and P. Shukla, “Futuristic avenues of metabolic engineering techniques in bioremediation,” Biotechnology and Applied Biochemistry, vol. 69, no. 1, pp. 51–60, Dec. 2020, doi: 10.1002/bab.2080.

L. K. Pang, M.-F. Huang, J. A. Gingold, M. Pena, R. Zhao, and D.-F. Lee, “Progress and possibilities for patient-derived iPSCs and genetically engineered stem cells in cancer modeling and targeted therapies,” iPSCs - State of the Science, pp. 247–288, 2022, doi: 10.1016/b978-0-323-85767-3.00004-9.

L.-M. Houdebine, “Production of pharmaceutical proteins by transgenic animals,” Comparative Immunology, Microbiology and Infectious Diseases, vol. 32, no. 2, pp. 107–121, Mar. 2009, doi: 10.1016/j.cimid.2007.11.005.

N. Tahri, W. Bahafid, H. Sayel, and N. El Ghachtouli, “Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms,” Biodegradation - Life of Science, Jun. 2013, doi: 10.5772/56194.

A. Stryjewska, K. Kiepura, T. Librowski, and S. Lochyński, “Biotechnology and genetic engineering in the new drug development. Part I. DNA technology and recombinant proteins,” Pharmacological Reports, vol. 65, no. 5, pp. 1075–1085, Sep. 2013, doi: 10.1016/s1734-1140(13)71466-x.

T. Tzfira and V. Citovsky, “Agrobacterium-mediated genetic transformation of plants: biology and biotechnology,” Current Opinion in Biotechnology, vol. 17, no. 2, pp. 147–154, Apr. 2006, doi: 10.1016/j.copbio.2006.01.009.

P. J. Heckmeier and D. Langosch, “Site-Specific Fragmentation of Green Fluorescent Protein Induced by Blue Light,” Biochemistry, vol. 60, no. 32, pp. 2457–2462, Jul. 2021, doi: 10.1021/acs.biochem.1c00248.

E. Mostafavi and H. Zare, “Carbon-based nanomaterials in gene therapy,” OpenNano, vol. 7, p. 100062, Jul. 2022, doi: 10.1016/j.onano.2022.100062.

I. K. Vasil, “A history of plant biotechnology: from the Cell Theory of Schleiden and Schwann to biotech crops,” Plant Cell Reports, vol. 27, no. 9, pp. 1423–1440, Jul. 2008, doi: 10.1007/s00299-008-0571-4.

A. Uzman, “Molecular biology of the cell (4th ed.): Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P.,” Biochemistry and Molecular Biology Education, vol. 31, no. 4, pp. 212–214, Jul. 2003, doi: 10.1002/bmb.2003.494031049999.

L. C. Thomason, J. A. Sawitzke, X. Li, N. Costantino, and D. L. Court, “Recombineering: Genetic Engineering in Bacteria Using Homologous Recombination,” Current Protocols in Molecular Biology, vol. 106, no. 1, Apr. 2014, doi: 10.1002/0471142727.mb0116s106.

L. G. Davis, M. D. Dibner, and J. F. Battey, “The Basics of Molecular Biology,” Basic Methods in Molecular Biology, pp. 2–5, 1986, doi: 10.1016/b978-0-444-01082-7.50005-9.

S. Alberti, A. D. Gitler, and S. Lindquist, “A suite of Gateway® cloning vectors for high‐throughput genetic analysis in Saccharomyces cerevisiae,” Yeast, vol. 24, no. 10, pp. 913–919, Jun. 2007, doi: 10.1002/yea.1502.

B. R. Glick and C. L. Patten, Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fifth Edition. American Society of Microbiology, 2017. doi: 10.1128/9781555819378.

P. Oliver, “Cloning for the layman. Understanding DNA and gene cloning: A guide for the curious. By KARL DRLICA. John Wiley & Sons, 1984, Pp. 205. Paperback $11.93,” BioEssays, vol. 1, no. 5, pp. 236–236, Nov. 1984, doi: 10.1002/bies.950010515.

J. Davison, “Risk mitigation of genetically modified bacteria and plants designed for bioremediation,” Journal of Industrial Microbiology & Biotechnology, vol. 32, no. 11–12, pp. 639–650, Jun. 2005, doi: 10.1007/s10295-005-0242-1.

H. Bayat, M. Omidi, M. Rajabibazl, S. Sabri, and A. Rahimpour, “The CRISPR Growth Spurt: from Bench to Clinic on Versatile Small RNAs,” Journal of Microbiology and Biotechnology, vol. 27, no. 2, pp. 207–218, Feb. 2017, doi: 10.4014/jmb.1607.07005.

J. Song et al., “Optimization of explosion puffing drying for high-value yellow-fleshed peach crisps using response surface methodology,” Drying Technology, vol. 37, no. 8, pp. 929–940, Dec. 2018, doi: 10.1080/07373937.2018.1474220.

M. Santos-Merino, A. K. Singh, and D. C. Ducat, “New Applications of Synthetic Biology Tools for Cyanobacterial Metabolic Engineering,” Frontiers in Bioengineering and Biotechnology, vol. 7, Feb. 2019, doi: 10.3389/fbioe.2019.00033.

A. K. Verma, D. Chettri, and A. K. Verma, “Potential of CRISPR/Cas9-Based Genome Editing in the Fields of Industrial Biotechnology: Strategies, Challenges, and Applications,” Industrial Microbiology and Biotechnology, pp. 667–690, 2022, doi: 10.1007/978-981-16-5214-1_23.

R. A. Börner, V. Kandasamy, A. M. Axelsen, A. T. Nielsen, and E. F. Bosma, “Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech,” FEMS Microbiology Letters, vol. 366, no. 1, Dec. 2018, doi: 10.1093/femsle/fny291.

S. Salazar-Cerezo, R. S. Kun, R. P. de Vries, and S. Garrigues, “CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer,” Enzyme and Microbial Technology, vol. 133, p. 109463, Feb. 2020, doi: 10.1016/j.enzmictec.2019.109463.

S. Shi, N. Qi, and J. Nielsen, “Microbial production of chemicals driven by CRISPR-Cas systems,” Current Opinion in Biotechnology, vol. 73, pp. 34–42, Feb. 2022, doi: 10.1016/j.copbio.2021.07.002.

L. Mekuto, S. K. O. Ntwampe, and J. B. N. Mudumbi, “Microbial communities associated with the co-metabolism of free cyanide and thiocyanate under alkaline conditions,” 3 Biotech, vol. 8, no. 2, Jan. 2018, doi: 10.1007/s13205-018-1124-3.

N. Gupta, R. D. V. Sundar, and S. Arunachalam, “A Review on the Genetically Engineered Microbes for Bioremediation of THMs Namely Hg and Cr,” ECS Transactions, vol. 107, no. 1, pp. 11509–11531, Apr. 2022, doi: 10.1149/10701.11509ecst.

Md. A. K. Azad, L. Amin, and N. M. Sidik, “Genetically engineered organisms for bioremediation of pollutants in contaminated sites,” Chinese Science Bulletin, vol. 59, no. 8, pp. 703–714, Jan. 2014, doi: 10.1007/s11434-013-0058-8.

Z. Nie, Y. Zhang, R. Tang, and X. Wang, “Biomimetic mineralization: An emerging organism engineering strategy for biomedical applications,” Journal of Inorganic Biochemistry, vol. 232, p. 111815, Jul. 2022, doi: 10.1016/j.jinorgbio.2022.111815.

J. Trögl, A. Chauhan, S. Ripp, A. C. Layton, G. Kuncová, and G. S. Sayler, “Pseudomonas fluorescens HK44: Lessons Learned from a Model Whole-Cell Bioreporter with a Broad Application History,” Sensors, vol. 12, no. 2, pp. 1544–1571, Feb. 2012, doi: 10.3390/s120201544.

E. G. Plotnikova, E. S. Shumkova, and M. S. Shumkov, “Whole-cell bacterial biosensors for the detection of aromatic hydrocarbons and their chlorinated derivatives (Review),” Applied Biochemistry and Microbiology, vol. 52, no. 4, pp. 347–357, Jul. 2016, doi: 10.1134/s0003683816040128.

S. Verma and A. Kuila, “Bioremediation of heavy metals by microbial process,” Environmental Technology & Innovation, vol. 14, p. 100369, May 2019, doi: 10.1016/j.eti.2019.100369.

G. S. Sayler and S. Ripp, “Field applications of genetically engineered microorganisms for bioremediation processes,” Current Opinion in Biotechnology, vol. 11, no. 3, pp. 286–289, Jun. 2000, doi: 10.1016/s0958-1669(00)00097-5.

S. Jaiswal and P. Shukla, “Alternative Strategies for Microbial Remediation of Pollutants via Synthetic Biology,” Frontiers in Microbiology, vol. 11, May 2020, doi: 10.3389/fmicb.2020.00808.

P. Sharma, “Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update,” Bioresource Technology, vol. 328, p. 124835, May 2021, doi: 10.1016/j.biortech.2021.124835.

S. R. Benjamin, F. de Lima, and A. K. Rathoure, “Genetically Engineered Microorganisms for Bioremediation Processes,” Biotechnology, pp. 1607–1634, 2019, doi: 10.4018/978-1-5225-8903-7.ch067.

Y. Zhang, T. Geary, and B. K. Simpson, “Genetically modified food enzymes: a review,” Current Opinion in Food Science, vol. 25, pp. 14–18, Feb. 2019, doi: 10.1016/j.cofs.2019.01.002.

D. Trono, “Recombinant Enzymes in the Food and Pharmaceutical Industries,” Advances in Enzyme Technology, pp. 349–387, 2019, doi: 10.1016/b978-0-444-64114-4.00013-3.

R. Chettri and J. P. Tamang, “Functional Properties ofTungrymbaiandBekang, naturally fermented soybean foods of North East India,” International Journal of Fermented Foods, vol. 3, no. 1, p. 87, 2014, doi: 10.5958/2321-712x.2014.01311.8.

A. Sharma, G. Gupta, T. Ahmad, S. Mansoor, and B. Kaur, “Enzyme Engineering: Current Trends and Future Perspectives,” Food Reviews International, vol. 37, no. 2, pp. 121–154, Dec. 2019, doi: 10.1080/87559129.2019.1695835.

S. Li, Q. Yang, B. Tang, and A. Chen, “Improvement of enzymatic properties of Rhizopus oryzae α-amylase by site-saturation mutagenesis of histidine 286,” Enzyme and Microbial Technology, vol. 117, pp. 96–102, Oct. 2018, doi: 10.1016/j.enzmictec.2018.06.012.

D. Xu et al., “Enhancement of ε-poly-l-lysine production by overexpressing the ammonium transporter gene in Streptomyces albulus PD-1,” Bioprocess and Biosystems Engineering, vol. 41, no. 9, pp. 1337–1345, Jul. 2018, doi: 10.1007/s00449-018-1961-9.

T. V. Plavec and A. Berlec, “Safety Aspects of Genetically Modified Lactic Acid Bacteria,” Microorganisms, vol. 8, no. 2, p. 297, Feb. 2020, doi: 10.3390/microorganisms8020297.

Z. J. Mays and N. U. Nair, “Synthetic biology in probiotic lactic acid bacteria: At the frontier of living therapeutics,” Current Opinion in Biotechnology, vol. 53, pp. 224–231, Oct. 2018, doi: 10.1016/j.copbio.2018.01.028.

J. Germond, M. Delley, N. D’Amico, and S. J. F. Vincent, “Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39,” European Journal of Biochemistry, vol. 268, no. 19, pp. 5149–5156, Oct. 2001, doi: 10.1046/j.0014-2956.2001.02450.x.

I. Mierau and M. Kleerebezem, “10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis,” Applied Microbiology and Biotechnology, vol. 68, no. 6, pp. 705–717, Oct. 2005, doi: 10.1007/s00253-005-0107-6.

P. A. Bron et al., “Renaissance of traditional DNA transfer strategies for improvement of industrial lactic acid bacteria,” Current Opinion in Biotechnology, vol. 56, pp. 61–68, Apr. 2019, doi: 10.1016/j.copbio.2018.09.004.

F. Yang, C. Hou, X. Zeng, and S. Qiao, “The Use of Lactic Acid Bacteria as a Probiotic in Swine Diets,” Pathogens, vol. 4, no. 1, pp. 34–45, Jan. 2015, doi: 10.3390/pathogens4010034.

S. F. Mazhar et al., “The Prospects for the Therapeutic Implications of Genetically Engineered Probiotics,” Journal of Food Quality, vol. 2020, pp. 1–11, Apr. 2020, doi: 10.1155/2020/9676452.

D. Zielińska and D. Kolożyn-Krajewska, “Food-Origin Lactic Acid Bacteria May Exhibit Probiotic Properties: Review,” BioMed Research International, vol. 2018, pp. 1–15, Oct. 2018, doi: 10.1155/2018/5063185.

F. E. Ahmed, “Genetically modified probiotics in foods,” Trends in Biotechnology, vol. 21, no. 11, pp. 491–497, Nov. 2003, doi: 10.1016/j.tibtech.2003.09.006.

K. B. Arun, A. Madhavan, S. Emmanual, R. Sindhu, P. Binod, and A. Pandey, “Enzymes in probiotics and genetically modified foods,” Value-Addition in Food Products and Processing Through Enzyme Technology, pp. 13–23, 2022, doi: 10.1016/b978-0-323-89929-1.00006-8.

R. Saber, M. Zadeh, K. C. Pakanati, P. Bere, T. Klaenhammer, and M. Mohamadzadeh, “Lipoteichoic acid-deficient Lactobacillus acidophilus regulates downstream signals,” Immunotherapy, vol. 3, no. 3, pp. 337–347, Mar. 2011, doi: 10.2217/imt.10.119.

Q. Gui, T. Lawson, S. Shan, L. Yan, and Y. Liu, “The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics,” Sensors, vol. 17, no. 7, p. 1623, Jul. 2017, doi: 10.3390/s17071623.

F. Long, A. Zhu, and H. Shi, “Recent Advances in Optical Biosensors for Environmental Monitoring and Early Warning,” Sensors, vol. 13, no. 10, pp. 13928–13948, Oct. 2013, doi: 10.3390/s131013928.

Y. Lei, W. Chen, and A. Mulchandani, “Microbial biosensors,” Analytica Chimica Acta, vol. 568, no. 1–2, pp. 200–210, May 2006, doi: 10.1016/j.aca.2005.11.065.

S. Chaudhary, “Progress on Azadirachta indica Based Biopesticides in Replacing Synthetic Toxic Pesticides,” Frontiers in Plant Science, vol. 8, 2017, doi: 10.3389/fpls.2017.00610.

F. M. Snowden, “Emerging and reemerging diseases: a historical perspective,” Immunological Reviews, vol. 225, no. 1, pp. 9–26, Sep. 2008, doi: 10.1111/j.1600-065x.2008.00677.x.

I. Kumari, R. Hussain, S. Sharma, Geetika, and M. Ahmed, “Microbial biopesticides for sustainable agricultural practices,” Biopesticides, pp. 301–317, 2022, doi: 10.1016/b978-0-12-823355-9.00024-9.

D. Lubertozzi and J. D. Keasling, “Developing Aspergillus as a host for heterologous expression,” Biotechnology Advances, vol. 27, no. 1, pp. 53–75, Jan. 2009, doi: 10.1016/j.biotechadv.2008.09.001.

N. Dahiya, R. Tewari, and G. S. Hoondal, “Biotechnological aspects of chitinolytic enzymes: a review,” Applied Microbiology and Biotechnology, vol. 71, no. 6, pp. 773–782, Jul. 2006, doi: 10.1007/s00253-005-0183-7.

M. Rajkumar, N. Ae, M. N. V. Prasad, and H. Freitas, “Potential of siderophore-producing bacteria for improving heavy metal phytoextraction,” Trends in Biotechnology, vol. 28, no. 3, pp. 142–149, Mar. 2010, doi: 10.1016/j.tibtech.2009.12.002.

P. R. Ryan, Y. Dessaux, L. S. Thomashow, and D. M. Weller, “Rhizosphere engineering and management for sustainable agriculture,” Plant and Soil, vol. 321, no. 1–2, pp. 363–383, May 2009, doi: 10.1007/s11104-009-0001-6.

S. Karabörklü, U. Azizoglu, and Z. B. Azizoglu, “Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control,” World Journal of Microbiology and Biotechnology, vol. 34, no. 1, Dec. 2017, doi: 10.1007/s11274-017-2397-0.

U. Azizoglu, G. S. Jouzani, N. Yilmaz, E. Baz, and D. Ozkok, “Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review,” Science of The Total Environment, vol. 734, p. 139169, Sep. 2020, doi: 10.1016/j.scitotenv.2020.139169.

N. Kuzmanović, J. Puławska, L. Hao, and T. J. Burr, “The Ecology of Agrobacterium vitis and Management of Crown Gall Disease in Vineyards,” Agrobacterium Biology, pp. 15–53, 2018, doi: 10.1007/82_2018_85.

E. Khomotso Michel Sehaole, “Genetic Transformation in Agro-Economically Important Legumes,” Legumes Research - Volume 1, Oct. 2022, doi: 10.5772/intechopen.101262.

D. Wu, A. Li, F. Ma, J. Yang, and Y. Xie, “Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium,” Applied Microbiology and Biotechnology, vol. 100, no. 14, pp. 6183–6192, Jun. 2016, doi: 10.1007/s00253-016-7650-1.

G. Osman, A. Assaeedi, Y. Osman, D. El-Ghareeb, and R. Alreedy, “Purification and characterization of Bacillus thuringiensis vegetative insecticidal toxin protein(s),” Letters in Applied Microbiology, vol. 57, no. 4, pp. 310–316, Jul. 2013, doi: 10.1111/lam.12115.

M. S. T. Abbas, “Genetically engineered (modified) crops (Bacillus thuringiensis crops) and the world controversy on their safety,” Egyptian Journal of Biological Pest Control, vol. 28, no. 1, Jun. 2018, doi: 10.1186/s41938-018-0051-2.

W. Cookson, L. Liang, G. Abecasis, M. Moffatt, and M. Lathrop, “Mapping complex disease traits with global gene expression,” Nature Reviews Genetics, vol. 10, no. 3, pp. 184–194, Mar. 2009, doi: 10.1038/nrg2537.

R. Rebollo, M. T. Romanish, and D. L. Mager, “Transposable Elements: An Abundant and Natural Source of Regulatory Sequences for Host Genes,” Annual Review of Genetics, vol. 46, no. 1, pp. 21–42, Dec. 2012, doi: 10.1146/annurev-genet-110711-155621.

K. E. Kemper and M. E. Goddard, “Understanding and predicting complex traits: knowledge from cattle,” Human Molecular Genetics, vol. 21, no. R1, pp. R45–R51, Aug. 2012, doi: 10.1093/hmg/dds332.

J. S. Singh, P. C. Abhilash, H. B. Singh, R. P. Singh, and D. P. Singh, “Genetically engineered bacteria: An emerging tool for environmental remediation and future research perspectives,” Gene, vol. 480, no. 1–2, pp. 1–9, Jul. 2011, doi: 10.1016/j.gene.2011.03.001.

H. Gatew, “Genetically modified foods (GMOs); a review of genetic engineering,” Journal of World’s Poultry Research, vol. 9, no. 6, pp. 157–163, Nov. 2019, doi: 10.36380/scil.2019.jlsb25.

R. B. Singh et al., “Genetically modified organisms and foods: perspectives and challenges,” Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases, pp. 493–505, 2022, doi: 10.1016/b978-0-12-819815-5.00041-0.

A. Bauer-Panskus, J. Miyazaki, K. Kawall, and C. Then, “Risk assessment of genetically engineered plants that can persist and propagate in the environment,” Environmental Sciences Europe, vol. 32, no. 1, Feb. 2020, doi: 10.1186/s12302-020-00301-0.

A.-K. Kolseth et al., “Influence of genetically modified organisms on agro-ecosystem processes,” Agriculture, Ecosystems & Environment, vol. 214, pp. 96–106, Dec. 2015, doi: 10.1016/j.agee.2015.08.021.

M. Bruinsma, G. A. Kowalchuk, and J. A. van Veen, “Effects of genetically modified plants on microbial communities and processes in soil,” Biology and Fertility of Soils, vol. 37, no. 6, pp. 329–337, Apr. 2003, doi: 10.1007/s00374-003-0613-6.

R. E. Goodman, R. Panda, and H. Ariyarathna, “Evaluation of Endogenous Allergens for the Safety Evaluation of Genetically Engineered Food Crops: Review of Potential Risks, Test Methods, Examples and Relevance,” Journal of Agricultural and Food Chemistry, vol. 61, no. 35, pp. 8317–8332, Jul. 2013, doi: 10.1021/jf400952y.

B. M. Chassy, “Food safety risks and consumer health,” New Biotechnology, vol. 27, no. 5, pp. 534–544, Nov. 2010, doi: 10.1016/j.nbt.2010.05.018.

A. Rizzi, N. Raddadi, C. Sorlini, L. Nordgrd, K. M. Nielsen, and D. Daffonchio, “The Stability and Degradation of Dietary DNA in the Gastrointestinal Tract of Mammals: Implications for Horizontal Gene Transfer and the Biosafety of GMOs,” Critical Reviews in Food Science and Nutrition, vol. 52, no. 2, pp. 142–161, Feb. 2012, doi: 10.1080/10408398.2010.499480.

Q. Chang, W. Wang, G. Regev‐Yochay, M. Lipsitch, and W. P. Hanage, “Antibiotics in agriculture and the risk to human health: how worried should we be?,” Evolutionary Applications, vol. 8, no. 3, pp. 240–247, Aug. 2014, doi: 10.1111/eva.12185.

P. Rajendran and P. Gunasekaran, “Nanotechnology for Bioremediation of Heavy Metals,” Environmental Bioremediation Technologies, pp. 211–221, doi: 10.1007/978-3-540-34793-4_9.

L. L. Wolfenbarger and P. R. Phifer, “The Ecological Risks and Benefits of Genetically Engineered Plants,” Science, vol. 290, no. 5499, pp. 2088–2093, Dec. 2000, doi: 10.1126/science.290.5499.2088.

T. Amar-Cofie Quashie and E. Yerenkyi Danquah, “The evaluation of drought-tolerance rice genetic resources,” International Journal on Food, Agriculture and Natural Resources, vol. 3, no. 2, pp. 16–21, Aug. 2022, doi: https://doi.org/10.46676/ij-fanres.v3i2.88.

T. Abena, “Biosensors Technological Advancement and Their Biomedical, Agricultural, Environmental and Food Industrial Applications: A Review,” International Journal on Food, Agriculture and Natural Resources, vol. 4, no. 3, pp. 46–57, Sep. 2023, doi: https://doi.org/10.46676/ij-fanres.v4i3.160.




DOI: https://doi.org/10.46676/ij-fanres.v4i4.127

Refbacks

  • There are currently no refbacks.


E-ISSN : 2722-4066

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

slot online