Nutritional and Physicochemical Properties and Safe Consumption of Jackfruit Seeds (Artocarpus heterophyllus Lam.)
Abstract
Fruits and vegetable by-products such as peels, rinds, and seeds are the focus of functional food research. By-products from jackfruit like seeds are functional foods/ingredients. However, studies on jackfruit seeds’ nutritional, physicochemical properties and safe consumption are limited. Thus, this study aimed to determine the nutritional and physicochemical properties of raw, roasted, and boiled jackfruit seeds, as well as how these seeds could be safely consumed. The nutrient composition, total dietary fiber composition and fermentability, resistant starch, antinutrients, heavy metals, and microbial load were determined using standard methods. Jackfruit seeds are good source of protein (9.9–10.2g/100g), ash (3.3–3.8g/100g), carbohydrates (21.45–82.15g/100g), a high source of dietary fiber (12.11–13.83g/100g), resistant starch (19.9–25.6g/100g) and amylose (20.61–23.03g/100g). Phytic acid, tannic acid, heavy metals, and microbial parameters of raw and thermally processed jackfruit seed were within acceptable limits, except for the microbial parameters in raw seeds. The starchy structure of processed jackfruit seed expands its granules with increased surface area, leading to better digestion. In conclusion, processed jackfruit seed can be a potential functional food or ingredient. Consumers and food industry professionals should be aware of the beneficial effects of jackfruit by-products.
Full Text:
PDFReferences
P. Nair, H. Palanivel, and R. Kumar, “Jackfruit (Artocarpus heterophyllus), a versatile but underutilized food source,” Fiji Agric. J., vol. 57, pp. 5–18, 2017.
M. T. Hossain, M. Hossain, M. Sarker, A. Shuvo, M. Alam, and M. Rahman, “Development and quality evaluation of bread supplemented with jackfruit seed flour,” Int. J. Nutr. Food Sci., vol. 3, pp. 484–487, 2014. doi:10.11648/j.ijnfs.20140305.28.
S. Islam, R. Begum, and M. Khatun, “A study on nutritional and functional propertie analysis of jackfruit seed flour and value addition to biscuits,” Int. J. Eng. Technol. (IJERT), vol. 4, pp. 139–147, 2015.
S. Roy, and G. Joshi, Minor Fruits – Tropical. Handbook of Fruit Science and Technology. New York: Marcel Dekker, Inc., 1995, pp. 570–573.
R. Waghmare, N. Memon, gatGat, Y., Gandhi, S., Kumar, V., and Panghal, A., “Jackfruit seed: an accompaniment to functional foods,” Brazilian J. Food Technol., vol. 22, pp. 1–9, 2019. doi:10.1590/1981-6723.20718.
R. A. S. N. Ranasinghe, S. D. T. Maduwanthi, and R. A. U. J. Marapana, “Nutritional and health benefits of jackfruit (Artocarpus heterophyllus Lam.): a review,” Int. J. Food Sci., vol. 2019, p. 4327183, 2019. doi:10.1155/2019/4327183.
Y. Zhang, M. Hu, K. Zhu, G. Wu, and L. Tan, “Functional properties and utilization of Artocarpus heterophyllus Lam seed starch from new species in China,” Int. J. Biol. Macromol., vol. 107, pp. 1395–1405, 2018. doi:10.1016/j.ijbiomac.2017.10.001.
I. A. O. Reis, S. B. Santos, L. A. Santos, N. Oliveira, M. G. Freire, J. F. B. Pereira, S. P. Ventura, J. A. Coutinho, C. M. Soares, and Á. S. Lima, “Increased significance of food wastes: selective recovery of added-value compounds,” Food Chem., vol. 135, pp. 2453–2461, 2012. doi:10.1016/j.foodchem.2012.07.010.
AOAC, Official Methods of Analysis, 20th ed. Washington DC: Association of Official Analytical Chemists, 2016.
M. C. Jonathan, J. J. G. C. van den Borne, P. van Wiechen, C. Souza Da Silva, H. A. Schols, and H. Gruppen, “In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans,” Food Chem., vol. 133, pp. 889–897, 2012. doi:10.1016/j.foodchem.2012.01.110.
T. P. Trinidad, T. M. Wolever, and L. U. Thompson, “Availability of calcium for absorption in the small intestine and colon from diets containing available and unavailable carbohydrates: an in vitro assessment,” Int. J. Food Sci. Nutr., vol. 47, pp. 83–88, 1996. doi:10.3109/09637489609028565.
M. C. Cleary, B. V., T. S. Gibson, and D. C. Mugford, “Measurement of total starch in CeraelCereal products by amyloglucosidase-a-amylase method: collaborative study,” J. AOAC Int., vol. 80, pp. 571–579, 1997.
S. H. Shanita, “Amylose and amylopectin in selected Malaysian foods and its relationship to glycemic index,” Sains Malays., pp. 865–870, 2011.
T.E. Eyinla, R.A. Sanusi and B.M. Dixon, “Effect of processing and variety on starch digestibility and glycemic inddex of popular foods made from cassava (Manihot esculenta),” Food Chemistry, vol. 356, 2021. doi: 10.1016/j.foodchem.2021.129664.
S. Rayaprolu, N. Hettiarachchy, M. Aldoury, S. Cho, D. Moseley, and P. Chen, “Physical and textural attributes of freeze-dried genetically modified and non-genetically modified soy beans,” Food Nutr. Sci., vol. 3, pp. 119–225, 2015. doi:10.11648/j.jfns.20150303.17.
F. Pieniazek, A. Sancho, and V. Messina, “Texture and color analysis of lentils and rice for instant meal using image processing techniques,” J. Food Process. Preserv., vol. 40, pp. 969–978, 2016. doi:10.1111/jfpp.12677.
D. S. de Castro, I. Dos Santos Moreira, L. M. de Melo Silva, J. P. Lima, W. P. da Silva, J. P. Gomes, and R. M. F. de Figueirêdo, “Isolation and characterization of starch from pitomba endocarp,” Food Res. Int., vol. 124, pp. 181–187, 2019. doi:10.1016/j.foodres.2018.06.032.
T. Abiola, O. Akinyode, and K. Sholademi, “The effect of processing on the nutritional and anti-nutritional factors in the raw, roasted and fermented jackfruit (Artocarpus heterophyllus) seeds,” E.C. Nutr., vol. 13, pp. 632–638, 2018.
U. Hicsonmez, C. Ozdemir, S. Cam, A. Ozdemir, and F. S. Erees (1012), “Major-minor element analysis in some plant seeds consumed as feed in Turkey,” Nat. Sci., vol. 4, pp. 298–303, 2012. doi:10.4236/ns.2012.45042.
G. I. Ogu, and P. I. Orjiakor, “Microbiological and nutritional qualities of fermented melon seed shells,” Int. J. Life Sci., vol. 1, pp. 1–9, 2017. doi:10.21744/ijls.v1i2.27.
S. Borgis, P. Bharati, and G. Shirnalli, “Effect of processing on storage and microbial quality of jackfruit (Artocarpus heterophyllus Lam.) seed flour,” Int. J. Curr. Microbiol. Appl. Sci., vol. 7, pp. 3058–3066, 2018. doi:10.20546/ijcmas.2018.705.357.
W. Braide, C. Ibegbulem, S. Adeleye, E. Anosike, P. Lugbe, et al, “Microbiological and nutritional analysis of roots and seeds of Moringa oleifera,” Int. J. Res Pharm. Biosci., vol. 4, pp. 19–24, 2017.
A. Sultana, M. Amin, M. Miah, A. Sarker, and M. Rasel, “Determination of proximate composition and amino acid profile of jackfruit seed and utilization of its seed flour for development of protein enriched supplementary food,” Cell Biol., vol. 5, pp. 57–65, 2017. doi:10.11648/j.cb.20170506.11.
S. O. Azeez, O. Lasekan, S. Jinap, and R. Sulaiman, “Physico-chemical properties, amino acid profile and antinutritional factors in seeds of three Malaysian grown jackfruit cultivars,” J. Food Agric. Environ., vol. 13, pp. 58–62, 2015.
M. J. M. Cordeiro, C. M. Veloso, L. S. Santos, R. C. F. Bonomo, M. Caliari, and R. D. C. I. Fontan, “The impact of heat-moisture treatment on the properties of Musa paradisiaca l. Starch and Optimization of Process Variables,” Food Technol. Biotechnol., vol. 56, pp. 506–515, 2018. doi:10.17113/ftb.56.04.18.5490.
S. Bhatta, T. Stevanovic Janezic, and C. Ratti, “Freeze-drying of plant-based foods,” Foods, vol. 9, p. 87, 2020. doi:10.3390/foods9010087.
E. Onyeike, and J. Oguike, “Influence of heat processing methods on the nutrient composition and lipid characterization of groundnut (Arachis hypogaea) seed pastes,” Int. J. Niger. Soc. Exp. Biol., vol. 15, pp. 34–43, 2003.
M. S. Danhassan, A. Salihu, and H. M. Inuwa, “Effect of boiling on protein, mineral, dietary fibre and antinutrient compositions of Nymphaea lotus (Linn) seeds,” J. Food Compos. Anal., vol. 67, pp. 184–190, 2018. doi:10.1016/j.jfca.2017.12.024.
O. Olanipekun, E. Omenna, O. Olapade, P. Suleiman, and O. Omodara, “Effects of boiling and roasting on the nutrient composition of kidney beans seed flour,” Sky J. Food Sci., vol. 4, pp. 24–29, 2015.
Y. Kumar, V. S. Sharanagat, L. Singh, and S. Mani, “Effect of germination and roasting on the proximate composition, total phenolics, and functional properties of black chickpea (Cicer arietinum),” Legume Sci., vol. 2, pp. 1–7, 2020. doi:10.1002/leg3.20.
F. S. Pushparaj, and A. Urooj, “Influence of processing on dietary fiber, tannin and in vitro protein digestibility of pearl millet,” Food Nutr. Sci., vol. 02, pp. 895–900, 2011.
Y. Tian, H. Rao, S. Tao, and W. Xue, “Effect of boiling on the structure and immunoreactivity of recombinant peanut protein Arah,” Food Agric. Immunol., vol. 29, pp. 845–858, 2018. doi:10.1080/09540105.2018.1461812.
S. Kumar, A. Singh, A. Abidi, and R. A. Upadhyay, “Proximate composition of jackfruit seeds,” J. Food Sci. Technol., vol. 25, pp. 308–309, 1988.
S. C. Alcázar-Alay, and M. A. A. Meireles, “Physicochemical properties, modifications and applications of starches from different botanical sources,” Food Sci. Technol. (Campinas), vol. 35, pp. 215–236, 2015. doi:10.1590/1678-457X.6749.
S. Kumari, R. Prasad, and A. Gupta, “Processing and utilization of jackfruit seeds, pearl millet and soybean flour for value addition,” J. Pharmacogn. Phytochem., vol. 7, pp. 569–572, 2018.
D. Dhingra, M. Michael, H. Rajput and R.T. Patil, “Dietary fibre in foods: a review,” J. Food Sci Technol., vol.49, 2012. Doi:10.1007/s13197-011-0365-5.
J. W. Anderson, P. Baird, R. H. Davis, S. Ferreri, M. Knudtson, A. Koraym, V. Waters, and C. L. Williams, “Health benefits of dietary fiber,” Nutr. Rev., vol. 67, pp. 188–205, 2009. doi:10.1111/j.1753-4887.2009.00189.x.
I. A. Brownlee, “The physiological roles of dietary fibre,” Food Hydrocoll., vol. 25, pp. 238–250, 2011. doi:10.1016/j.foodhyd.2009.11.013.
P. M. Opyd, A. Jurgoński, J. Juśkiewicz, J. Milala, Z. Zduńczyk, and B. Król, “Nutritional and health-related effects of a diet containing apple seed meal in rats: the case of amygdalin,” Nutrients, vol. 9, p. 1091, 2017. doi:10.3390/nu9101091.
Y. Ge, W. Wang, M. Shen, Z. Kang, J. Wang, Z. Quan, J. Xiao, S. Zhao, D. Liu, and L. Cao, “Effect of natural fermentation of sorghum on resistant starch Molecular Structure and fermentation property,” J. Chem., vol. 2020, pp. 1–11, 2020. doi:10.1155/2020/9835214.
J. Ejiofor, E. Beleya, and N. Onyenorah, “The effect of processing methods on the functional and compositional properties of jackfruit seed flour,” Int. J. Nutr. Food Sci., vol. 3, pp. 166–173, 2014. doi:10.11648/j.ijnfs.20140303.15.
A. D. T. Fabbri, and G. A. Crosby, “A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes,” Int. J. Gastronomy Food Sci., vol. 3, pp. 2–11. http://doiorg/10.1016/j.ijgfs.2015.11.001, 2016.
A. D.T. Fabbri, R.W.Schacht and G.A. Crosby, “ Evaluation of resistant starch content of cooked black beans, pinto beans, and chickpeas,” NFS Journal, vol. 3, pp. 8-12, 2016. doi: 10.1016/j.nfs.2016.02.2002.
B. S. Yadav, A. Sharma, and R. B. Yadav, “Studies on effect of multiple heating/cooling cycles on the resistant starch formation in cereals, legumes and tubers,” Int. J. Food Sci. Nutr., vol. 60 (suppl. 4), pp. 258–272, 2009. doi:10.1080/09637480902970975.
I. L. Brown, “Applications and uses of resistant starch,” J. AOAC Int., vol. 87, pp. 727–732, 2004. doi:10.1093/jaoac/87.3.727.
V. Valentina, A. Pratiwi, P. Hsiao, H. Tseng, J. Hsieh, and C. Chen, “Sensorial characterization of foods before and after freeze-drying,” Austin Food Sci., vol. 1, p. 102, 2016.
S. Nwosİsİ, D. Nandwanİ, and R. Ravİ, “Texture profile analysis of organic sweetpotato (Ipomoea batatas) cultivars as affected by different thermal processing methods,” Int. J. Agric. Environ. Food Sci., vol. 3, pp. 93–100. doi:10.31015/jaefs.2019.2.7.
S. B. Erkan, H. N. Gürler, D. G. Bilgin, M. Germec, and I. Turhan, “Production and characterization of tempehs from different sources of legume by Rhizopus oligosporus,” LWT Food Sci. Technol., vol. 119, 2020. doi:10.1016/j.lwt.2019.108880.
S. Borgis, and P. Bharati, “Processing characteristics and acceptability of jackfruit (Artocarpus heterophyllus Lam.) seeds, physical and functional properties of its flour,” EPRA Int. J. Res Dev., vol. 5, pp. 193–202, 2020.
R. Arivuchudar and P. Nazni, “Nutritional composition, textural and sensory properties of ocimum basilicum L. seeds incorporated steamed rice cake” Curr. Res. Nutr. Food Sci., vol. 8, pp. 1046–1055, 2020. doi:10.12944/CRNFSJ.8.3.31.
A. P. Silva, I. Oliveira, M. E. Silva, C. M. Guedes, O. Borges, B. Magalhães, and B. Gonçalves, “Starch characterization in seven raw, boiled and roasted chestnuts (Castanea sativa Mill.) cultivars from Portugal,” J. Food Sci. Technol., vol. 53, pp. 348–358, 2016. doi:10.1007/s13197-015-2047-1.
V. P. Oikonomopoulou, M. K. Krokida, and V. T. Karathanos, “The influence of freeze drying conditions on microstructural changes of food products,” Procedia Food Sci., vol. 1, pp. 647–654, 2011. doi:10.1016/j.profoo.2011.09.097.
S. M. Tosh, and S. Yada, “Dietary fibres in pulse seeds and fractions: characterization, functional attributes, and applications,” Food Res. Int., vol. 43, pp. 450–460, 2010. doi:10.1016/j.foodres.2009.09.005.
J. Chen, Y. Liang, X. Li, L. Chen, and F. Xie, “Supramolecular structure of jackfruit seed starch and its relationship with digestibility and physicochemical properties,” Carbohydr. Polym., vol. 150, pp. 269–277, 2016. doi:10.1016/j.carbpol.2016.05.030.
B. O. Mbah, P. E. Eme, and O. F. Ogbusu, “Effect of cooking methods (boiling and roasting) on nutrients and anti-nutrients content of Moringa oleifera seeds,” Pak. J. Nutr., vol. 11, pp. 211–215, 2012. doi:10.3923/pjn.2012.211.215.
M. Torre, A. R. Rodriguez, and F. Saura-Calixto, “Effects of dietary fiber and phytic acid on mineral availability,” Crit. Rev. Food Sci. Nutr., vol. 30, pp. 1–22, 1991. doi:10.1080/10408399109527539.
J. Amadi, I. Austin, and O. Anene, “Nutrient and phytochemical composition of jackfruit (Artocarpus heterophyllus) pulp, seeds and leaves,” Int. J. Innov. Food Nutr. Sustain. Agric., vol. 6, pp. 27–32, 2018.
U. S. Ndidi, C. U. Ndidi, I. A. Aimola, O. Y. Bassa, M. Mankilik, and Z. Adamu, “Effects of processing (boiling and roasting) on the nutritional and antinutritional properties of Bambara groundnuts (Vigna subterranea [L.] Verdc.) from Southern Kaduna, Nigeria,” J. Food Process. Hindawi Publishing Corporation, vol. 2014, pp. 1–9, 2014. doi:10.1155/2014/472129.
S. Acharya, and D. K. Sharma, “Study on the effects of heavy metals on seed germination and plant growth on Jatropha curcas,” Int. J. Agric. Sci. Res., vol. 3, pp. 31–34, 2014.
F. Azi, M. O. Odo, P. A. Okorie, H. A. Njoku, V. N. Nwobasi, E. David, and T. C. Onu, “Heavy metal and microbial safety assessment of raw and cooked pumpkin and Amaranthus viridis leaves grown in Abakaliki, Nigeria,” Food Sci. Nutr., vol. 6, pp. 1537–1544, 2018. doi:10.1002/fsn3.739.
A. Noah, and O. Ogunfowote, “Microbiological quality of raw, boiled and fermented breadnut seed (Artocarpus Camansi) -used as condiment,” Adv. Microbiol., vol. 6, pp. 1–9, 2017. doi:10.9734/JAMB/2017/36577.
F. Papa Spada, P. P. M. da Silva, G. F. Mandro, G. B. Margiotta, M. H. F. Spoto, and S. G. Canniatti-Brazaca, “Physicochemical characteristics and high sensory acceptability in cappuccinos made with jackfruit seeds replacing cocoa powder,” PLOS ONE, vol. 13, p. e0197654, 2018. doi:10.1371/journal.pone.0197654.
B. Akter, and M. A. Haque, “Utilization of jackfruit (Artocarpus Aaheterophyllus) seed’s flour in food processing: a review,” Agriculturists, vol. 16, pp. 131–142, 2018. doi:10.3329/agric.v16i02.40351.
N. Ummu Habibah, N. Albaar, and H. Rasulu, “The Effect of Substitution of Seed Flour of Jackfruit (Artocarpus heterophyllus Lam.) on the Physicochemical and Organoleptic Characteristics of Macrons,” International Journal on Food, Agriculture and Natural Resources, vol. 2, no. 1, pp. 19–24, May 2021, doi: https://doi.org/10.46676/ij-fanres.v2i1.25.
W. Amilia, W. Andi Eko, F. Dhifa, R. A. Setiawan, I. B. Suryaningrat, N. S. Mahardika, B. Suryadarma. “Physical, Chemical, and Sensory Characteristics of Frozen Salted Edamame During Storage at Room Temperature,” International Journal on Food, Agriculture and Natural Resources, vol. 2, no. 1, pp. 9–18, May 2021, doi: https://doi.org/10.46676/ij-fanres.v2i1.20.
DOI: https://doi.org/10.46676/ij-fanres.v4i4.187
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.